Browse > Article
http://dx.doi.org/10.3348/kjr.2014.15.6.739

Comparison of Image Quality of Shoulder CT Arthrography Conducted Using 120 kVp and 140 kVp Protocols  

Ahn, Se Jin (Department of Radiology, Seoul National University College of Medicine)
Hong, Sung Hwan (Department of Radiology, Seoul National University College of Medicine)
Chai, Jee Won (Department of Radiology, Boramae Medical Center)
Choi, Ja-Young (Department of Radiology, Seoul National University College of Medicine)
Yoo, Hye Jin (Department of Radiology, Seoul National University College of Medicine)
Kim, Sae Hoon (Department of Orthopedic Surgery, Seoul National University College of Medicine)
Kang, Heung Sik (Department of Radiology, Seoul National University College of Medicine)
Publication Information
Korean Journal of Radiology / v.15, no.6, 2014 , pp. 739-745 More about this Journal
Abstract
Objective: To compare the image quality of shoulder CT arthrography performed using 120 kVp and 140 kVp protocols. Materials and Methods: Fifty-four CT examinations were prospectively included. CT scans were performed on each patient at 120 kVp and 140 kVp; other scanning parameters were kept constant. Image qualities were qualitatively and quantitatively compared with respect to noise, contrast, and diagnostic acceptability. Diagnostic acceptabilities were graded using a one to five scale as follows: 1, suboptimal; 2, below average; 3, acceptable; 4, above average; and 5, superior. Radiation doses were also compared. Results: Contrast was better at 120 kVp, but noise was greater. No significant differences were observed between the 120 kVp and 140 kVp protocols in terms of diagnostic acceptability, signal-to-noise ratio, or contrast-to-noise ratio. Lowering tube voltage from 140 kVp to 120 kVp reduced the radiation dose by 33%. Conclusion: The use of 120 kVp during shoulder CT arthrography reduces radiation dose versus 140 kVp without significant loss of image quality.
Keywords
Shoulder CT arthrography; Radiation dose; Tube voltage; Image quality;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Lecouvet FE, Simoni P, Koutaïssoff S, Vande Berg BC, Malghem J, Dubuc JE. Multidetector spiral CT arthrography of the shoulder. Clinical applications and limits, with MR arthrography and arthroscopic correlations. Eur J Radiol 2008;68:120-136   DOI   ScienceOn
2 Oh JH, Kim JY, Choi JA, Kim WS. Effectiveness of multidetector computed tomography arthrography for the diagnosis of shoulder pathology: comparison with magnetic resonance imaging with arthroscopic correlation. J Shoulder Elbow Surg 2010;19:14-20   DOI   ScienceOn
3 Kim YJ, Choi JA, Oh JH, Hwang SI, Hong SH, Kang HS. Superior labral anteroposterior tears: accuracy and interobserver reliability of multidetector CT arthrography for diagnosis. Radiology 2011;260:207-215   DOI
4 De Filippo M, Araoz PA, Pogliacomi F, Castagna A, Petriccioli D, Sverzellati N, et al. Recurrent superior labral anterior-to-posterior tears after surgery: detection and grading with CT arthrography. Radiology 2009;252:781-788   DOI
5 Choi JY, Kim SH, Yoo HJ, Shin SH, Oh JH, Baek GH, et al. Superior labral anterior-to-posterior lesions: comparison of external rotation and active supination CT arthrography with neutral CT arthrography. Radiology 2012;263:199-205   DOI
6 Lecouvet FE, Dorzée B, Dubuc JE, Vande Berg BC, Jamart J, Malghem J. Cartilage lesions of the glenohumeral joint: diagnostic effectiveness of multidetector spiral CT arthrography and comparison with arthroscopy. Eur Radiol 2007;17:1763-1771   DOI
7 De Filippo M, Bertellini A, Sverzellati N, Pogliacomi F, Costantino C, Vitale M, et al. Multidetector computed tomography arthrography of the shoulder: diagnostic accuracy and indications. Acta Radiol 2008;49:540-549   DOI
8 Omoumi P, Bafort AC, Dubuc JE, Malghem J, Vande Berg BC, Lecouvet FE. Evaluation of rotator cuff tendon tears: comparison of multidetector CT arthrography and 1.5-T MR arthrography. Radiology 2012;264:812-822   DOI
9 Cochet H, Couderc S, Pelé E, Amoretti N, Moreau-Durieux MH, Hauger O. Rotator cuff tears: should abduction and external rotation (ABER) positioning be performed before image acquisition? A CT arthrography study. Eur Radiol 2010;20:1234-1241   DOI
10 Ambrosino MM, Genieser NB, Roche KJ, Kaul A, Lawrence RM. Feasibility of high-resolution, low-dose chest CT in evaluating the pediatric chest. Pediatr Radiol 1994;24:6-10   DOI
11 Sigal-Cinqualbre AB, Hennequin R, Abada HT, Chen X, Paul JF. Low-kilovoltage multi-detector row chest CT in adults: feasibility and effect on image quality and iodine dose. Radiology 2004;231:169-174   DOI   ScienceOn
12 Heyer CM, Mohr PS, Lemburg SP, Peters SA, Nicolas V. Image quality and radiation exposure at pulmonary CT angiography with 100- or 120-kVp protocol: prospective randomized study. Radiology 2007;245:577-583   DOI   ScienceOn
13 Wintersperger B, Jakobs T, Herzog P, Schaller S, Nikolaou K, Suess C, et al. Aorto-iliac multidetector-row CT angiography with low kV settings: improved vessel enhancement and simultaneous reduction of radiation dose. Eur Radiol 2005;15:334-341   DOI   ScienceOn
14 Feuchtner GM, Jodocy D, Klauser A, Haberfellner B, Aglan I, Spoeck A, et al. Radiation dose reduction by using 100-kV tube voltage in cardiac 64-slice computed tomography: a comparative study. Eur J Radiol 2010;75:e51-e56   DOI
15 Waldt S, Metz S, Burkart A, Mueller D, Bruegel M, Rummeny EJ, et al. Variants of the superior labrum and labro-bicipital complex: a comparative study of shoulder specimens using MR arthrography, multi-slice CT arthrography and anatomical dissection. Eur Radiol 2006;16:451-458   DOI   ScienceOn
16 Park EA, Lee W, Kang JH, Yin YH, Chung JW, Park JH. The image quality and radiation dose of 100-kVp versus 120-kVp ECG-gated 16-slice CT coronary angiography. Korean J Radiol 2009;10:235-243   DOI   ScienceOn
17 Abada HT, Larchez C, Daoud B, Sigal-Cinqualbre A, Paul JF. MDCT of the coronary arteries: feasibility of low-dose CT with ECG-pulsed tube current modulation to reduce radiation dose. AJR Am J Roentgenol 2006;186(6 Suppl 2):S387-S390   DOI
18 Choi JY, Kang HS, Hong SH, Lee JW, Kim NR, Jun WS, et al. Optimization of the contrast mixture ratio for simultaneous direct MR and CT arthrography: an in vitro study. Korean J Radiol 2008;9:520-525   DOI
19 De Maeseneer M, Boulet C, Pouliart N, Kichouh M, Buls N, Verhelle F, et al. Assessment of the long head of the biceps tendon of the shoulder with 3T magnetic resonance arthrography and CT arthrography. Eur J Radiol 2012;81:934-939   DOI
20 Binkert CA, Verdun FR, Zanetti M, Pfirrmann CW, Hodler J. CT arthrography of the glenohumeral joint: CT fluoroscopy versus conventional CT and fluoroscopy--comparison of image-guidance techniques. Radiology 2003;229:153-158   DOI
21 Lee GY, Choi JA, Oh JH, Choi JY, Hong SH, Kang HS. Posteroinferior labral cleft at direct CT arthrography of the shoulder by using multidetector CT: is this a normal variant? Radiology 2009;253:765-770   DOI
22 von Falck C, Galanski M, Shin HO. Informatics in radiology: sliding-thin-slab averaging for improved depiction of low-contrast lesions with radiation dose savings at thin-section CT. Radiographics 2010;30:317-326   DOI
23 Joo SM, Lee KH, Kim YH, Kim SY, Kim K, Kim KJ, et al. Detection of the normal appendix with low-dose unenhanced CT: use of the sliding slab averaging technique. Radiology 2009;251:780-787   DOI
24 Lee KH, Hong H, Hahn S, Kim B, Kim KJ, Kim YH. Summation or axial slab average intensity projection of abdominal thin-section CT datasets: can they substitute for the primary reconstruction from raw projection data? J Digit Imaging 2008;21:422-432   DOI