Browse > Article
http://dx.doi.org/10.3348/kjr.2014.15.2.235

Monopolar Radiofrequency Ablation Using a Dual-Switching System and a Separable Clustered Electrode: Evaluation of the In Vivo Efficiency  

Yoon, Jeong Hee (Department of Radiology, Seoul National University Hospital)
Lee, Jeong Min (Department of Radiology, Seoul National University Hospital)
Hwang, Eui Jin (Department of Radiology, Seoul National University Hospital)
Hwang, In Pyung (Department of Radiology, Seoul National University Hospital)
Baek, Jeehyun (Department of Radiology, Seoul National University Hospital)
Han, Joon Koo (Department of Radiology, Seoul National University Hospital)
Choi, Byung Ihn (Department of Radiology, Seoul National University Hospital)
Publication Information
Korean Journal of Radiology / v.15, no.2, 2014 , pp. 235-244 More about this Journal
Abstract
Objective: To determine the in vivo efficiency of monopolar radiofrequency ablation (RFA) using a dual-switching (DS) system and a separable clustered (SC) electrode to create coagulation in swine liver. Materials and Methods: Thirty-three ablation zones were created in nine pigs using a DS system and an SC electrode in the switching monopolar mode. The pigs were divided into two groups for two experiments: 1) preliminary experiments (n = 3) to identify the optimal inter-electrode distances (IEDs) for dual-switching monopolar (DSM)-RFA, and 2) main experiments (n = 6) to compare the in vivo efficiency of DSM-RFA with that of a single-switching monopolar (SSM)-RFA. RF energy was alternatively applied to one of the three electrodes (SSM-RFA) or concurrently applied to a pair of electrodes (DSM-RFA) for 12 minutes in in vivo porcine livers. The delivered RFA energy and the shapes and dimensions of the coagulation areas were compared between the two groups. Results: No pig died during RFA. The ideal IEDs for creating round or oval coagulation area using the DSM-RFA were 2.0 and 2.5 cm. DSM-RFA allowed more efficient RF energy delivery than SSM-RFA at the given time ($23.0{\pm}4.0kcal$ vs. $16.92{\pm}2.0kcal$, respectively; p = 0.0005). DSM-RFA created a significantly larger coagulation volume than SSM-RFA ($40.4{\pm}16.4cm^3$ vs. $20.8{\pm}10.7cm^3$; p < 0.001). Both groups showed similar circularity of the ablation zones (p = 0.29). Conclusion: Dual-switching monopolar-radiofrequency ablation using an SC electrode is feasible and can create larger ablation zones than SSM-RFA as it allows more RF energy delivery at a given time.
Keywords
Liver; Interventional procedures; Thermal ablation; Radiofrequency ablation; Experimental study;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Lee JM, Han JK, Kim HC, Kim SH, Kim KW, Joo SM, et al. Multiple-electrode radiofrequency ablation of in vivo porcine liver: comparative studies of consecutive monopolar, switching monopolar versus multipolar modes. Invest Radiol 2007;42:676-683   DOI   ScienceOn
2 Forner A, Llovet JM, Bruix J. Hepatocellular carcinoma. Lancet 2012;379:1245-1255   DOI   ScienceOn
3 Lencioni R, Crocetti L, Pina MC, Cioni D. Percutaneous imageguided radiofrequency ablation of liver tumors. Abdom Imaging 2009;34:547-556   DOI
4 Lencioni R. Loco-regional treatment of hepatocellular carcinoma. Hepatology 2010;52:762-773   DOI
5 Cho YK, Kim JK, Kim MY, Rhim H, Han JK. Systematic review of randomized trials for hepatocellular carcinoma treated with percutaneous ablation therapies. Hepatology 2009;49:453-459   DOI   ScienceOn
6 Livraghi T, Meloni F, Di Stasi M, Rolle E, Solbiati L, Tinelli C, et al. Sustained complete response and complications rates after radiofrequency ablation of very early hepatocellular carcinoma in cirrhosis: is resection still the treatment of choice? Hepatology 2008;47:82-89
7 European Association For The Study Of The Liver; European Organisation For Research And Treatment Of Cancer. EASL-EORTC clinical practice guidelines: management of hepatocellular carcinoma. J Hepatol 2012;56:908-943   DOI   ScienceOn
8 Peng ZW, Lin XJ, Zhang YJ, Liang HH, Guo RP, Shi M, et al. Radiofrequency ablation versus hepatic resection for the treatment of hepatocellular carcinomas 2 cm or smaller: a retrospective comparative study. Radiology 2012;262:1022-1033   DOI
9 Kuvshinoff BW, Ota DM. Radiofrequency ablation of liver tumors: influence of technique and tumor size. Surgery 2002;132:605-611; discussion 611-612   DOI   ScienceOn
10 Shiina S, Teratani T, Obi S, Sato S, Tateishi R, Fujishima T, et al. A randomized controlled trial of radiofrequency ablation with ethanol injection for small hepatocellular carcinoma. Gastroenterology 2005;129:122-130   DOI   ScienceOn
11 Livraghi T, Goldberg SN, Lazzaroni S, Meloni F, Ierace T, Solbiati L, et al. Hepatocellular carcinoma: radiofrequency ablation of medium and large lesions. Radiology 2000;214:761-768   DOI   ScienceOn
12 Waki K, Aikata H, Katamura Y, Kawaoka T, Takaki S, Hiramatsu A, et al. Percutaneous radiofrequency ablation as first-line treatment for small hepatocellular carcinoma: results and prognostic factors on long-term follow up. J Gastroenterol Hepatol 2010;25:597-604   DOI   ScienceOn
13 Pompili M, Saviano A, de Matthaeis N, Cucchetti A, Ardito F, Federico B, et al. Long-term effectiveness of resection and radiofrequency ablation for single hepatocellular carcinoma ${\leq}$3 cm. Results of a multicenter Italian survey. J Hepatol 2013;59:89-97   DOI
14 Solmi L, Nigro G, Roda E. Therapeutic effectiveness of echoguided percutaneous radiofrequency ablation therapy with a LeVeen needle electrode in hepatocellular carcinoma. World J Gastroenterol 2006;12:1098-1104   DOI
15 Mazzaferro V, Battiston C, Perrone S, Pulvirenti A, Regalia E, Romito R, et al. Radiofrequency ablation of small hepatocellular carcinoma in cirrhotic patients awaiting liver transplantation: a prospective study. Ann Surg 2004;240:900-909   DOI   ScienceOn
16 Lopez PM, Villanueva A, Llovet JM. Systematic review: evidence-based management of hepatocellular carcinoma-- an updated analysis of randomized controlled trials. Aliment Pharmacol Ther 2006;23:1535-1547   DOI   ScienceOn
17 Dodd GD 3rd, Frank MS, Aribandi M, Chopra S, Chintapalli KN. Radiofrequency thermal ablation: computer analysis of the size of the thermal injury created by overlapping ablations. AJR Am J Roentgenol 2001;177:777-782   DOI   ScienceOn
18 Lee J, Lee JM, Yoon JH, Lee JY, Kim SH, Lee JE, et al. Percutaneous radiofrequency ablation with multiple electrodes for medium-sized hepatocellular carcinomas. Korean J Radiol 2012;13:34-43   DOI   ScienceOn
19 Chen MH, Yang W, Yan K, Zou MW, Solbiati L, Liu JB, et al. Large liver tumors: protocol for radiofrequency ablation and its clinical application in 110 patients--mathematic model, overlapping mode, and electrode placement process. Radiology 2004;232:260-271   DOI   ScienceOn
20 Mulier S, Miao Y, Mulier P, Dupas B, Pereira P, De Baere T, et al. Electrodes and multiple electrode systems for radio frequency ablation: a proposal for updated terminology. Adv Exp Med Biol 2006;574:57-73   DOI
21 Ni Y, Mulier S, Miao Y, Michel L, Marchal G. A review of the general aspects of radiofrequency ablation. Abdom Imaging 2005;30:381-400   DOI   ScienceOn
22 Woo S, Lee JM, Yoon JH, Joo I, Kim SH, Lee JY, et al. Smalland medium-sized hepatocellular carcinomas: monopolar radiofrequency ablation with a multiple-electrode switching system-mid-term results. Radiology 2013;268:589-600   DOI
23 Laeseke PF, Sampson LA, Haemmerich D, Brace CL, Fine JP, Frey TM, et al. Multiple-electrode radiofrequency ablation creates confluent areas of necrosis: in vivo porcine liver results. Radiology 2006;241:116-124   DOI   ScienceOn
24 Frericks BB, Ritz JP, Roggan A, Wolf KJ, Albrecht T. Multipolar radiofrequency ablation of hepatic tumors: initial experience. Radiology 2005;237:1056-1062   DOI
25 Lee JM, Han JK, Kim HC, Choi YH, Kim SH, Choi JY, et al. Switching monopolar radiofrequency ablation technique using multiple, internally cooled electrodes and a multichannel generator: ex vivo and in vivo pilot study. Invest Radiol 2007;42:163-171   DOI   ScienceOn
26 Lee ES, Lee JM, Kim KW, Lee IJ, Han JK, Choi BI. Evaluation of the in vivo efficiency and safety of hepatic radiofrequency ablation using a 15-G $Octopus^{(R)}$ in pig liver. Korean J Radiol 2013;14:194-201   DOI
27 Lee ES, Lee JM, Kim WS, Choi SH, Joo I, Kim M, et al. Multiple-electrode radiofrequency ablations using $Octopus^{(R)}$ electrodes in an in vivo porcine liver model. Br J Radiol 2012;85:e609-e615   DOI
28 Yoon JH, Lee JM, Han JK, Choi BI. Dual switching monopolar radiofrequency ablation using a separable clustered electrode: comparison with consecutive and switching monopolar modes in ex vivo bovine livers. Korean J Radiol 2013;14:403-411   DOI
29 Lee FT Jr, Haemmerich D, Wright AS, Mahvi DM, Sampson LA, Webster JG. Multiple probe radiofrequency ablation: pilot study in an animal model. J Vasc Interv Radiol 2003;14:1437-1442   DOI   ScienceOn
30 Lee JM, Han JK, Kim SH, Choi SH, An SK, Han CJ, et al. Bipolar radiofrequency ablation using wet-cooled electrodes: an in vitro experimental study in bovine liver. AJR Am J Roentgenol 2005;184:391-397   DOI
31 Laeseke PF, Sampson LA, Haemmerich D, Brace CL, Fine JP, Frey TM, et al. Multiple-electrode radiofrequency ablation: simultaneous production of separate zones of coagulation in an in vivo porcine liver model. J Vasc Interv Radiol 2005;16:1727-1735   DOI
32 Laeseke PF, Sampson LA, Frey TM, Mukherjee R, Winter TC 3rd, Lee FT Jr, et al. Multiple-electrode radiofrequency ablation: comparison with a conventional cluster electrode in an in vivo porcine kidney model. J Vasc Interv Radiol 2007;18:1005-1010   DOI   ScienceOn
33 Lee JD, Lee JM, Kim SW, Kim CS, Mun WS. MR imaginghistopathologic correlation of radiofrequency thermal ablation lesion in a rabbit liver model: observation during acute and chronic stages. Korean J Radiol 2001;2:151-158   DOI   ScienceOn
34 Lee JM, Han JK, Lee JY, Kim SH, Choi JY, Lee MW, et al. Hepatic radiofrequency ablation using multiple probes: ex vivo and in vivo comparative studies of monopolar versus multipolar modes. Korean J Radiol 2006;7:106-117   DOI   ScienceOn
35 Lee JM, Han JK, Chang JM, Chung SY, Kim SH, Lee JY, et al. Radiofrequency ablation of the porcine liver in vivo: increased coagulation with an internally cooled perfusion electrode. Acad Radiol 2006;13:343-352   DOI
36 Lee JM, Han JK, Kim SH, Shin KS, Lee JY, Park HS, et al. Comparison of wet radiofrequency ablation with dry radiofrequency ablation and radiofrequency ablation using hypertonic saline preinjection: ex vivo bovine liver. Korean J Radiol 2004;5:258-265   DOI
37 Appelbaum L, Sosna J, Pearson R, Perez S, Nissenbaum Y, Mertyna P, et al. Algorithm optimization for multitined radiofrequency ablation: comparative study in ex vivo and in vivo bovine liver. Radiology 2010;254:430-440   DOI
38 Baldwin K, Katz SC, Rubin A, Somasundar P. Bipolar radiofrequency ablation of liver tumors: technical experience and interval follow-up in 22 patients with 33 ablations. J Surg Oncol 2012;106:905-910   DOI
39 Clasen S, Rempp H, Schmidt D, Schraml C, Hoffmann R, Claussen CD, et al. Multipolar radiofrequency ablation using internally cooled electrodes in ex vivo bovine liver: correlation between volume of coagulation and amount of applied energy. Eur J Radiol 2012;81:111-113   DOI