Browse > Article
http://dx.doi.org/10.1007/s43236-022-00466-2

Voltage balancing control of a series-resonant DAB converter with a virtual line shaft  

Lee, Sangmin (School of Electrical and Computer Engineering, University of Seoul)
Hong, Woonjung (School of Electrical and Computer Engineering, University of Seoul)
Kim, Taewan (School of Electrical and Computer Engineering, University of Seoul)
Kim, Gil-Dong (Korea Railroad Research Institute (KRRI))
Lee, Eun S. (School of Electrical Engineering, Hanyang University, ERICA Campus)
Lee, Seung-Hwan (School of Electrical and Computer Engineering, University of Seoul)
Publication Information
Journal of Power Electronics / v.22, no.8, 2022 , pp. 1347-1356 More about this Journal
Abstract
A multilevel series-resonant dual-active bridge (SRDAB) converter is widely used in high-voltage and high-power systems to reduce the voltage stress of inverter switches. However, an imbalance in the DC-link voltage between the DAB converters can cause system failure because inverter switches can be destroyed by voltage and current stress. In this study, a virtual line shaft (VLS) control is proposed to achieve output voltage and power balance between SRDAB converter modules. The gains of the controllers are selected using the frequency responses of the controllers. The disturbance rejection performance of the virtual line shaft and cross-coupling controller is compared. To evaluate the performance of the controllers, the time-domain responses of the VLS and cross-coupling controllers are compared. The simulated and experimental results show that the output voltages of the SRDAB modules are well balanced. The proposed voltage controller regulates the output voltage of an SRDAB module within 20 ms. The output voltages of the SRDAB modules are synchronized well even under asynchronous load changes.
Keywords
Resonant converter; DC/DC converter; Multilevel converter; DAB converter;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Zhang, X., Green, T.C.: The modular multilevel converter for high step-up ratio DC-DC conversion. IEEE Trans. Ind. Electron. 62(8), 4925-4936 (2015)   DOI
2 He, P., Khaligh, A.: Comprehensive analyses and comparison of 1 KW Isolated DC-DC Converters for Bidirectional EV Charging Systems. IEEE Trans. Transp. Electrif. 3(1), 147-156 (2017)   DOI
3 Su, G.J., Tang, L.: A multiphase, modular, bidirectional, triple-voltage DC-DC converter for hybrid and fuel cell vehicle power systems. IEEE Trans. Power Electron. 23(6), 3035-3046 (2008)   DOI
4 Cui, S., Kim, S., Jung, J.J., Sul, S.K.: A comprehensive cell capacitor energy control strategy of a modular multilevel converter (MMC) without a stif DC bus voltage source. IEEE Appl Power Electron (2014). https://doi.org/10.1109/APEC.2014.6803370   DOI
5 Anderson, R.G., Meyer, A.J., Valenzuela, M.A., Lorenz, R.D.: Web machine coordinated motion control via electronic line-shafting. IEEE Trans. Ind. Appl. 37(1), 247-254 (2001)   DOI
6 Wu, J., Wen, P., Sun, X., Yan, X.: Reactive power optimization control for bidirectional dual-tank resonant DC-DC converters for fuel cells systems. IEEE Trans. Power Electron. 35(9), 9202-9214 (2020)   DOI
7 Zhu, C., Tu, Q., Jiang, C., Pan, M., Huang, H.: A cross coupling control strategy for dual-motor speed synchronous system based on second order global fast terminal sliding mode control. IEEE Access 8, 217967-217976 (2020)   DOI
8 Li, X., Bhat, A.K.S.: Analysis and design of high-frequency isolated dual-bridge series resonant DC/DC Converter. IEEE Trans. Power Electron. 25(4), 850-862 (2010)   DOI
9 Wu, J., Li, Y., Sun, X., Liu, F.: A new dual-bridge series resonant DC-DC converter with dual tank. IEEE Trans. Power Electron. 33(5), 3884-3897 (2018)
10 Kenzelmann, S., Rufer, A., Dujic, D., Canales, F., De Novaes, Y.R.: Isolated DC/DC structure based on modular multilevel converter. IEEE Trans. Power Electron. 30(1), 89-98 (2015)   DOI
11 Pan, Y., et al.: A dual-loop control to ensure fast and stable fault-tolerant operation of series resonant DAB converters. IEEE Trans. Power Electron. 35(10), 10994-11012 (2020)   DOI
12 Grbovic, P.J.: Master/slave control of input-series- and output-parallel-connected converters: concept for low-cost high-voltage auxiliary power supplies. IEEE Trans. Power Electron. 24(2), 316-328 (2009)   DOI
13 Hao, Z., Li, X., Cao, X., Gan, Y., Yu, Q., Zhang, Q.: A cross-coupled control strategy of phase difference for electric vibration damping actuator. IEEE Access 8, 213887-213898 (2020)   DOI
14 Anibal Valenzuela, M., Lorenz, R.D.: Electronic line-shafting control for paper machine drives. IEEE Trans. Ind. Appl. 37(1), 158-164 (2001)   DOI
15 Wang, J., Wu, H., Yang, T., Zhang, L., Xing, Y.: Bidirectional three-phase DC-AC converter with embedded DC-DC converter and carrier-based PWM strategy for wide voltage range applications IEEE Trans. Ind. Electron. 66(6), 4144-4155 (2019)   DOI
16 Corradini, L., Seltzer, D., Bloomquist, D., Zane, R., Maksimovic, D., Jacobson, B.: Zero voltage switching technique for bidirectional DC/DC converters. IEEE Trans. Power Electron. 29(4), 1585-1594 (2014)   DOI
17 Mazumder, S.K., Tahir, M., Acharya, K.: Master-slave current-sharing control of a parallel DC-DC converter system over an RF communication interface. IEEE Trans. Ind. Electron. 55(1), 59-66 (2008)   DOI
18 Geng, Q., Liu, W., Wang, H., Zhou, Z., Zhang, G.: An improved electronic line shafting control for multimotor drive system based on sliding mode observer. Math. Probl. Eng. (2019). https://doi.org/10.1155/2019/7064141   DOI
19 Blasko, V., Kaura, V., Niewiadomski, W.: Sampling of discontinuous voltage and current signals in electrical drives: a system approach. IEEE Trans. Ind. Appl. 34(5), 1123-1130 (1998)   DOI
20 Lee, S., Lee, S.H.: Dq synchronous reference frame model of a series-series tuned inductive power transfer system. IEEE Trans. Ind. Electron. 67(12), 10325-10334 (2020)   DOI
21 Grbovic, P.J., Delarue, P., Le Moigne, P., Bartholomeus, P.: A bidirectional three-level DC-DC converter for the ultracapacitor applications. IEEE Trans. Ind. Electron. 57(10), 3415-3430 (2010)   DOI
22 Chen, H.C., Lu, C.Y., Rout, U.S.: Decoupled master-slave current balancing control for three-phase interleaved boost converters. IEEE Trans. Power Electron. 33(5), 3683-3687 (2018)   DOI
23 Denniston, N., Massoud, A.M., Ahmed, S., Enjeti, P.N.: Multiple-module high-gain high-voltage DC-DC transformers for offshore wind energy systems. IEEE Trans. Ind. Electron. 58(5), 1877-1886 (2011)   DOI
24 Cao, L., Loo, K.H., Lai, Y.M.: Output-impedance shaping of bidirectional DAB DC-DC converter using double-proportional-integral feedback for near-ripple-free DC bus voltage regulation in renewable energy systems. IEEE Trans. Power Electron. 31(3), 2187-2199 (2016)   DOI
25 Song, W., Zhong, M., Luo, S., Yang, S.: Model predictive power control for bidirectional series-resonant isolated DC-DC converters with fast dynamic response in locomotive traction system. IEEE Trans. Transp. Electrif. 6(3), 1326-1337 (2020)   DOI
26 Khan, M.A., Ahmed, A., Husain, I., Sozer, Y., Badawy, M.: Performance analysis of bidirectional DC-DC converters for electric vehicles. IEEE Trans. Ind. Appl. 51(4), 3442-3452 (2015)   DOI
27 Corradini, L., Seltzer, D., Bloomquist, D., Zane, R., Maksimovic, D., Jacobson, B.: Minimum current operation of bidirectional dual-bridge series resonant DC/DC converters. IEEE Trans. Power Electron. 27(7), 4144-4155 (2012)
28 Zeng, J., Qiao, W., Qu, L.: An isolated three-port bidirectional DC-DC converter for photovoltaic systems with energy storage. IEEE Trans. Ind. Appl. 51(4), 3493-3503 (2015)   DOI