Browse > Article
http://dx.doi.org/10.1007/s43236-022-00438-6

Full closed loop-based dynamic accuracy enhancement for elastic joints  

Liu, Haitao (Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University)
Wang, Yan (Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University)
Shan, Xianlei (Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University)
Publication Information
Journal of Power Electronics / v.22, no.6, 2022 , pp. 959-969 More about this Journal
Abstract
Owing to the elasticity of transmission systems, actuated joints suffer from dynamic errors that seriously affect the tracking accuracy. Mainly drawing on the full closed loop control strategy, this paper focuses on the dynamic accuracy enhancement of elastic joints. Having proposed a simplified dynamic error modelling method for elastic joints with cascade control, an analytical dynamic error model of the servo drive system is built, allowing the revelation of the influence mechanisms of semi- and full closed loop control schemes on dynamic errors. The dynamic error model indicates that a full closed loop control scheme with a large position loop gain can effectively reduce the elasticity-caused dynamic error. To overcome the strict limitation on the position loop gain of traditional full closed loop control, an additional speed feedback is used to improve the dynamic error reduction capability. Experimental results show that the dynamic error can be dramatically reduced, resulting in a remarkable improvement of tracking accuracy of elastic joints.
Keywords
Elastic joint; Dynamic accuracy enhancement; Dynamic error model; Full closed loop control;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Siciliano, B., Khatib, O.: Springer handbook of robotics. Springer-Verlag, New York (2007)
2 Mokhtari, M., Taghizadeh, M., Mazare, M.: Hybrid adaptive robust control based on CPG and ZMP for a lower limb exoskeleton. Robotica 39(2), 181-199 (2021)   DOI
3 Dumanli, A., Sencer, B.: Optimal high-bandwidth control of ball-screw drives with acceleration and jerk feedback. Precis. Eng.-J. Int. Soc. Precis. Eng. Nanotechnol. 54, 254-268 (2018)
4 Ellis, G.: Control system design guide, 4th edn. Academic Press, Cambridge (2012)
5 Takahashia, Y., Takahashi, H.: Precise positioning control with double feedback loop for ultralarge scale integrated manufacturing machine. Rev. Sci. Instrum. 73(7), 2791 (2002)   DOI
6 Biagiotti, L., Moriello, L., Melchiorri, C.: Improving the accuracy of industrial robots via iterative reference trajectory modification. IEEE Trans. Control Syst. Technol. 28(3), 831-843 (2020)   DOI
7 Shang, W.W., Cong, S., Ge, Y.: Coordination motion control in the task space for parallel manipulators with actuation redundancy. IEEE Trans. Autom. Sci. Eng. 10(3), 665-673 (2013)   DOI
8 Dumanli, A., Sencer, B.: Pre-compensation of servo tracking errors through data-based reference trajectory modification. CIRP Ann-Manuf. Technol. 68(1), 397-400 (2019)   DOI
9 Li, R., Zhao, Y.: Dynamic error compensation for industrial robot based on thermal effect model. Measurement 88, 113-120 (2016)   DOI
10 Gordon, D.J., Erkorkmaz, K.: Accurate control of ball screw drives using pole-placement vibration damping and a novel trajectory prefilter. Precis. Eng.-J. Int. Soc. Precis. Eng. 37(2), 308-322 (2013)
11 Spong, M.W., Hutchinson, S., Vidyasagar, M.: Robot modeling and control. John Wiley & Sons, Hoboken (2006)
12 Guo, B.Z., Han, J.Q., Xi, F.B.: Linear tracking-differentiator and application to online estimation of the frequency of a sinusoidal signal with random noise perturbation. Int J Syst Sci. 33(5), 351-358 (2002)   DOI
13 Xie, L.B., Qiu, Z.C., Zhang, X.M.: Development of a 3-PRR precision tracking system with full closed-loop measurement and control. Sensors 19(8), 1756 (2019)   DOI
14 Sun, Z., Pritschow, G., Lechler, A.: Enhancement of feed drive dynamics using additional table speed feedback. CIRP Ann-Manuf. Technol. 65, 357-360 (2016)   DOI
15 Li, F.H., Jiang, Y., Li, T.M., Ehmann, K.F.: Compensation of dynamic mechanical tracking errors in ball screw drives. Mechatronics 55, 27-37 (2018)   DOI
16 Shan, X.L., Cheng, G.: Structural error and friction compensation control of a 2(3PUS+S) parallel manipulator. Mech. Mach. Theory 124, 92-103 (2018)   DOI
17 Tian, W.J., Yin, F.W., Liu, H.T., Li, J.H., Li, Q., Huang, T., Chetwynd, D.G.: Kinematic calibration of a 3-DOF spindle head using a double ball bar. Mech. Mach. Theory 102, 167-178 (2016)   DOI
18 Lyu, D., Liu, Q., Liu, H., Zhao, W.H.: Dynamic error of CNC machine tools: a state-of-the-art review". Int. J. Adv. Manuf. Technol. 106(5-6), 1869-1891 (2019)   DOI
19 Dai, L., Yu, Y.T., Zhai, D.H., Huang, T., Xia, Y.Q.: Robust model predictive tracking control for robot manipulators with disturbances. IEEE Trans. Ind. Electron. 68(5), 4288-4297 (2021)   DOI
20 Yang, X., Zhu, L.M., Ni, Y.B., Liu, H.T., Zhu, W.L., Shi, H., Huang, T.: Modified robust dynamic control for a diamond parallel robot. IEEE-ASME. T Mech. 24(3), 959-968 (2019)   DOI
21 Rad, S.A., Tamizi, M.G., Azmoun, M., Masouleh, M.T., Kalhor, A.: Experimental study on robust adaptive control with insufficient excitation of a 3-DOF spherical parallel robot for stabilization purposes. Mech. Mach. Theory 153, 104026 (2020)   DOI
22 Sun, W., Lin, J.W., Su, S.F., Wang, N., Er, M.J.: Reduced adaptive fuzzy decoupling control for lower limb exoskeleton. IEEE T. Cybern. 51(3), 1099-1109 (2021)   DOI
23 Liu, H.T., Liu, H.R., Shan, X.L.: Linear active disturbance rejection control with torque compensation for electric load simulator. J Power Electron 21, 195-203 (2021)   DOI
24 Zhu, W.D., Li, G.H., Dong, H.Y., Ke, Y.L.: Positioning error compensation on two-dimensional manifold for robotic machining. Robot. Comput.-Integr. Manuf. 59, 394-405 (2019)   DOI