Browse > Article
http://dx.doi.org/10.1007/s43236-022-00413-1

Hierarchical carrier-based discontinuous PWM strategy for hybrid-switch current source rectifier  

Wang, Weiqi (College of Electrical Engineering and Automation, Shandong University of Science and Technology)
Meng, Xiangjian (College of Electrical Engineering and Automation, Shandong University of Science and Technology)
Liang, Xi (PipeChina North Pipeline Company)
Publication Information
Journal of Power Electronics / v.22, no.6, 2022 , pp. 903-914 More about this Journal
Abstract
This paper proposes a hybrid-switch three-phase current source rectifier (CSR) solution, which employs only one silicon carbide (SiC) switch and six traditional silicon (Si) switches. The corresponding hierarchical discontinuous pulse width modulation (HDPWM) strategy for the proposed CSR is also presented, which uses two parallel carrier-based discontinuous PWM branches to perform differentiated modulation operations on Si and SiC devices to endow the Si switches with zero current switching capability and conveniently make full use of the high-speed and low-loss advantages of SiC devices. Consequently, the proposed hybrid-switch CSR with HDPWM can even work as a full SiC device-switching converter with relatively lower costs, thus addressing the critical needs of efficiency promotion of CSR applications. MATLAB simulations and experimental verifications were conducted to verify the performance of the proposed CSR solution.
Keywords
Current source; AC-DC converter; Hybrid switches; Modulation;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Jiang L., Lu Z., Chen H., Wu X.: A novel hybrid 3-phase PWM current source rectifier using SCRs and IGBTs. In: IEEE Energy Conversion Congress and Exposition, pp. 1235-1239 (2009). https://doi.org/10.1109/ECCE.2009.5316417   DOI
2 Jiang L., Cai Z., Lu Z., Chen H.: Research on the improved 3-phase PWM Current Source Rectifier with hybrid switch. In: IEEE International Power Electronics and Motion Control Conference, pp. 1626-1629 (2009). https://doi.org/10.1109/IPEMC.2009.5157650   DOI
3 Wang, W., Gao, F., Yang, Y., Blaabjerg, F.: An eight-switch five-level current source inverter. IEEE Trans. Power Electron. 34(9), 8389-8404 (2019)   DOI
4 Zmood, D.N., Holmes, D.G.: Improved voltage regulation for current-source inverters. IEEE Trans. Ind. Appl. 37(4), 1028-1036 (2001)   DOI
5 Dankovic, D., Mitrovic, N., Prijic, Z., Stojadinovic, N.D.: Modeling of NBTS efects in P-channel power VDMOSFETs. IEEE Trans. Device Mater. Reliab. 20(1), 204-213 (2020)   DOI
6 Naguib M. F., Lopes L. A. C.: Analysis of a hybrid current source converter with bi-directional power fow capability. In: IEEE Canada Electrical Power Conference, pp. 128-133 (2007). https://doi.org/10.1109/EPC.2007.4520318   DOI
7 Wang, W., Gao, F., Yang, Y., Blaabjerg, F.: Operation and modulation of H7 current-source inverter with hybrid SiC and Si semi-conductor switches. IEEE J. Emerg. Select. Top. Power Electron. 6(1), 387-399 (2018)   DOI
8 Li, Y.W., Wu, B., Xu, D., Zargari, N.R.: Space vector sequence investigation and synchronization methods for active front-end rectifiers in high-power current-source drives. IEEE Trans. Indust. Electron. 55(3), 1022-1034 (2008)   DOI
9 Jiao Q., Hosseini R., Cuzner R. M.: A comparison between silicon carbide based current source rectifier and voltage source rectifier for applications in community DC microgrid. In: IEEE International Conference on Renewable Energy Research and Applications (ICRERA), pp. 544-549 (2016). https://doi.org/10.1109/ICRERA.2016.7884394   DOI
10 Lu D., Wang X., Blaabjerg F.: Investigation on the AC/DC interactions in voltage-source rectifiers and current-source rectifiers. In: IEEE 19th Workshop on Control and Modeling for Power Electronics (COMPEL), pp. 1-6 (2018). https://doi.org/10.1109/COMPEL.2018.8460150   DOI
11 Cheng, R., He, Y., Lei, C., Wang, Y., Liu, J.: Research on realizing space vector equivalent modulation output by dual carrier modulation of current source inverter. IEEE Trans. Power Electron. 36(7), 8494-8505 (2021)   DOI
12 Friedli, T., Round, S.D., Hassler, D., Kolar, J.W.: Design and performance of a 200-kHz all-SiC JFET current dc-link back-to-back converter. IEEE Trans. Ind. Appl. 45(5), 1868-1878 (2009)   DOI
13 Wang, J., Xun, Y., Liu, X., Yu, S., Jiang, N.: Soft switching circuit of high-frequency active neutral point clamped inverter based on SiC/Si hybrid device. J. Power Electron. 21, 71-84 (2021)   DOI
14 Scaini, V., Ma, T.: High-current DC choppers in the metals industry. IEEE Ind. Appl. Mag. 8(2), 26-33 (2002)   DOI
15 Bierhof M. H., Fuchs F. W.: Semiconductor losses in voltage source and current source IGBT converters based on analytical derivation. In: IEEE Annual Power Electronics Specialists Conference, pp. 2836-2842 (2004). https://doi.org/10.1109/PESC.2004.1355283   DOI
16 Naguib M.F., Lopes L.A.C.: Soft-switching of a hybrid bi-directional Current Source Converter. In: IEEE Power Electronics Specialists Conference, pp. 4177-4183 (2008). https://doi.org/10.1109/PESC.2008.4592610   DOI
17 Wei, Q., Wu, B., Xu, D., Zargari, N.R.: A medium-frequency transformer-based wind energy conversion system used for current-source converter-based offshore wind farm. IEEE Trans. Power Electron. 32(1), 248-259 (2017)   DOI
18 Popat, M., Wu, B., Liu, F., Zargari, N.R.: Coordinated control of cascaded current-source converter based offshore wind farm. IEEE Trans. Sustain. Energy. 3, 557-565 (2012)   DOI
19 Narasimhan S., Anurag A., Bhattacharya S.: Comparative study of a 3.3 kV SiC-based voltage and current source inverter for high-speed motor drive applications. In: IEEE Energy Conversion Congress and Exposition-Asia (ECCE-Asia), pp. 2211-2217 (2021). https://doi.org/10.1109/ECCE-Asia49820.2021.9479066   DOI
20 Wei, Q., Xing, L., Xu, D., Wu, B., Zargari, N.R.: Modulation schemes for medium-voltage PWM current source converter-based drives: an overview. IEEE J. Emerg. Select. Top. Power Electron. 7(2), 1152-1161 (2019)   DOI
21 Xu, F., Guo, B., Xu, Z., Tolbert, L.M., Wang, F., Blalock, B.J.: Paralleled three-phase current-source rectifiers for high-efficiency power supply applications. IEEE Trans. Ind. Appl. 51(3), 2388-2397 (2015)   DOI
22 Homes D.G., Lipo T.A.: Modulation of Current Source Inverters. in Pulse width modulation for power converters: principles and practice. IEEE Press. 337-348(2003). https://doi.org/10.1109/9780470546284.ch7   DOI
23 Stojadinovic, N., Dankovic, D., Manic, I., Prijic, A., Davidovic, V., Djoric-Veljkovic, S., Golubovic, S., Prijic, Z.: Threshold voltage instabilities in p-channel power VDMOSFETs under pulsed NBT stress. Microelectron. Reliab. 50(9-11), 1278-1282 (2010)   DOI
24 Peng, C., Lei, Z., Gao, R., Zhang, Z., Chen, Y., En, Y., Huang, Y.: Investigation of negative bias temperature instability effect in partially depleted SOI pMOSFET. IEEE Access. 8, 99037-99046 (2020)   DOI
25 Lopes, L.A.C., Naguib, M.F.: Space-vector-modulated hybrid bidirectional current source converter. IEEE Trans. Power Electron. 25(4), 1055-1067 (2010)   DOI
26 Guo, X., Yang, Y., Wang, X.: Optimal space vector modulation of current-source converter for DC-link current ripple reduction. IEEE Trans. Industr. Electron. 66(3), 1671-1680 (2019)   DOI
27 Guo, B., Wang, F., Aeloiza, E.: A novel three-phase current source rectifier with delta-type input connection to reduce the device conduction loss. IEEE Trans. Power Electron. 31(2), 1074-1084 (2016)   DOI
28 Liu, Y., Tang, S., Wang, H., Ning, G., Xiong, W.: Independent power decoupling method using minimum switch devices for single-phase current source converters. J. Power Electron. 21, 1383-1394 (2021)   DOI
29 Monteiro V., Exposto B., Pinto J. G., Sepulveda M. J., Melendez A. A. N., Afonso J. L.: Three-phase three-level current-source converter for EVs fast battery charging systems. In: IEEE International Conference on Industrial Technology, pp. 1401-1406 (2015). https://doi.org/10.1109/ICIT.2015.7125293   DOI
30 Xu, Y., Wang, Z., Liu, P., Chen, Y., He, J.: Soft-switching current-source rectifier based onboard charging system for electric vehicles. IEEE Trans. Ind. Appl. 57(5), 5086-5098 (2021)   DOI
31 Tu, H., Feng, H., Srdic, S., Lukic, S.: Extreme fast charging of electric vehicles: a technology overview. IEEE Trans. Transp. Electrific. 5(4), 861-878 (2019)   DOI
32 Kim, K.Y., Bak, Y., Lee, K.B.: Predictive current control for indirect matrix converter with reduced current ripple. J. Power Electron. 20, 443-454 (2020)   DOI
33 Wallace, I., Bendre, A., Nord, J.P., Venkataramanan, G.: A unity-power-factor three-phase PWM SCR rectifier for high-power applications in the metal industry. IEEE Trans. Ind. Appl. 38(4), 898-908 (2002)   DOI
34 Monteiro V., Pinto J. G., Exposto B., Afonso J.L.: Comprehensive comparison of a current-source and a voltage-source converter for three-phase EV fast battery chargers. In: International Conference on Compatibility and Power Electronics, pp. 173-178 (2015). https://doi.org/10.1109/CPE.2015.7231068   DOI
35 Liu, P., Wang, Z., Xu, Y., Xiao, H., Li, Y.W.: Optimal overlaptime distribution of space vector modulation for current-source rectifier. IEEE Trans. Industr. Electron. 68(6), 4586-4597 (2021)   DOI