Browse > Article
http://dx.doi.org/10.1007/s43236-021-00365-y

Magnetic integrated LCL filter design for a 2.5 kW three-phase grid-connected inverter with double closed-loop control  

Chen, Feng (Electric Power Research Institute of Guangdong Power Grid Co., Ltd)
Jiang, Shiqi (School of Electrical Engineering and Automation, Harbin Institute of Technology)
Jin, Dianheng (Shenzhen Kstar Technology Co., Ltd)
Mei, Zhaozhao (Shenzhen Kstar Technology Co., Ltd)
Publication Information
Journal of Power Electronics / v.22, no.2, 2022 , pp. 338-350 More about this Journal
Abstract
Output filter is an essential part of a grid-connected inverter used for improving the quality of a grid-injected current. The use of LCL filters in power converters in microgrid applications is more preferred compared with L or LC filters because of their better harmonic attenuation capability. However, LCL filter still occupies a main part of the weight and volume of the whole system. Thus, more progress can be further developed with this consideration. In this paper, based on a 2.5 kW three-phase voltage source inverter, a magnetic-integrated LCL filter is designed by sharing an EIE-type core to reduce weight and size significantly. With the magnetic coupling influence taken into consideration, more effective design principles of the filter are discussed according to theoretical analysis and mathematical modeling. Meanwhile, a double closed-loop control strategy is utilized to eliminate the resonance introduced by the LCL filter and stabilize the system. Simulation and practical experiments are conducted with a detailed comparison between the discrete and integrated LCL filters, which can verify the feasibility and validity of the proposed method.
Keywords
Three-phase inverter; LCL filter; Magnetic integration; Harmonic attenuation; Double closed-loop control;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Wu, W., He, Y., Blaabjerg, F.: An LLCL power filter for single-phase grid-tied inverter. IEEE Trans. Power Electron. 27(2), 782-789 (2012)   DOI
2 Nanjing New Conda Magnetic Industrial Co. LTD [EB/OL] (2021). http://www.ncd.com.cn/companyfle/10/. Accessed 26 Oct 2021
3 Jiang, S., Liu, Y.: EMI Noise reduction for the single-phase gridconnected inverter with a modified harmonic filter design. IEEE Trans. Electromagn. Compat. 63(3), 739-751 (2021)   DOI
4 Xin, Z., Mattavelli, P., Yao, W., Yang, Y., Blaabjerg, F., Loh, P.C.: Mitigation of grid-current distortion for LCL-filtered voltage-source inverter with inverter-current feedback control. IEEE Trans. Power Electron. 33(7), 6248-6261 (2018)   DOI
5 Villarreal-Ortiz, R.A., Hernandez-Angeles, M., Fuerte-Esquivel, C.R., Villanueva-Chavez, R.O.: Centroid PWM technique for inverter harmonics elimination. IEEE Trans. Power Deliv. 20(2), 1209-1210 (2005)   DOI
6 Li, X., Lin, P., Tang, Y.: Magnetic integration of LTL filter with twoLC-traps for grid-connected power converters. IEEE J. Emerg. Sel. Top. Power Electron. 6(3), 1434-1446 (2018)   DOI
7 Liu, Y., See, K., Yin, S., Simanjorang, R., Tong, C.F., Nawawi, A., Lai, J.J.: LCL filter design of a 50-kW 60-kHz SiC inverter with size and thermal considerations for aerospace applications. IEEE Trans. Ind. Electron. 64(10), 8321-8333 (2017)   DOI
8 Grahame, H.D.: Pulse width modulation for power converters : Principles and practice. Wiley Sons 45(1), 71-77 (2003)
9 Du, E., Zhang, N., Hodge, B., Wang, Q., Kang, C., Kroposki, B., Xia, Q.: The role of concentrating solar power toward high renewable energy penetrated power systems. IEEE Trans. Power Syst. 33(6), 6630-6641 (2018)   DOI
10 Patel, R., Li, C., Meegahapola, L., McGrath, B., Yu, X.: Enhancing optimal automatic generation control in a multi-area power system with diverse energy resources. IEEE Trans. Power Syst. 34(5), 3465-3475 (2019)   DOI
11 Albanna, A.Z., Hatziadoniu, C.J.: Harmonic Modeling of Hysteresis Inverters in Frequency Domain. IEEE Trans. Power Electron. 25(5), 1110-1114 (2010)   DOI
12 Liu, Y., Jin, D., Jiang, S., Liang, W., Peng, J., Lai, C.: An active damping control method for the LLCL filter-based SiC MOS-FET grid-connected inverter in vehicle-to-grid application. IEEE Trans. Veh. Technol. 68(4), 3411-3423 (2019)   DOI
13 Kulothungan, G.S., Edpuganti, A., Rathore, A.K., Rodriguez, J., Srinivasan, D.: Hybrid SVM-SOPWM modulation of current-fed three-level inverter for high power application. IEEE Trans. Ind. Appl. 55(4), 4344-4358 (2019)   DOI
14 Gambhir, A., Mishra, S.K., Joshi, A.: Power frequency harmonic reduction and its redistribution for improved filter design in current-fed switched inverter. IEEE Trans. Ind. Electron. 66(6), 4319-4333 (2019)   DOI
15 Liu, Y., Jiang, S., Jin, D., Peng, J.: Performance comparison of Si IGBT and SiC MOSFET power devices based LCL three-phase inverter with double closed-loop control. IET Power Electron. 12(2), 322-329 (2019)   DOI
16 Li, X., Fang, J., Lin, P., Tang, Y.: A common magnetic integration method for single-phase LCL filters and LLCL filters. In: 2017 IEEE Energy Conversion Congress and Exposition (ECCE), pp. 5595-5600 (2017)
17 Huang, Q., Huang, A.Q., Yu, R., Liu, P., Yu, W.: High-efficiency and high-density single-phase dual-mode cascaded buck-boost multilevel transformerless PV inverter with gan AC switches. IEEE Trans. Power Electron. 34(8), 7474-7488 (2019)   DOI
18 Ko, W., Gu, J.: Impact of shunt active harmonic filter on harmonic current distortion of voltage source inverter-fed drives. IEEE Trans. Ind. Appl. 52(4), 2816-2825 (2016)   DOI
19 Zeng, Z., Yang, J.-Q., Chen, S.-L., Huang, J.: Fast-transient repetitive control strategy for a three-phase LCL filter-based shunt active power filter. J. Power Electron. 14(2), 392-401 (2014)   DOI
20 Fang, J., Li, H., Tang, Y.: A magnetic integrated LLCL filter for grid-connected voltage-source converters. IEEE Trans. Power Electron. 32(3), 1725-1730 (2017)   DOI
21 Liu, Y., See, K.Y., Tseng, K.J., Simanjorang, R., Lai, J.: Magnetic integration of three-phase LCL filter with delta-yoke composite core. IEEE Trans. Power Electron. 32(5), 3835-3843 (2017)   DOI
22 Zhong, Q.: Harmonic droop controller to reduce the voltage harmonics of inverters. IEEE Trans. Ind. Electron. 60(3), 936-945 (2013)   DOI
23 Sangwongwanich, A., Yang, Y., Blaabjerg, F.: High-performance constant power generation in grid-connected PV systems. IEEE Trans. Power Electron. 31(3), 1822-1825 (2016)   DOI
24 Arricibita, D., Sanchis, P., Gonzalez, R., Marroyo, L.: Impedance emulation for voltage harmonic compensation in PWM stand-alone inverters. IEEE Trans. Energy Convers. 32(4), 1335-1344 (2017)   DOI
25 IEEE Power and Energy Society: Recommended practice and requirements for harmonic control in electric power systems. In: IEEE Std 519-2014 (Revision of IEEE Std 519-1992), pp. 1-29. Piscataway (2014)
26 Qi, Y., Fang, J., Liu, J., Tang, Y.: Coordinated control for harmonic mitigation of parallel voltage-source inverters. CES Trans. Electric. Mach. Syst. 2(3), 276-283 (2018)   DOI