Joint estimation of state of charge and state of health of lithium-ion battery based on fractional order model |
Xu, Yuanzhong
(Department of Electrical Engineering, Hubei University of Technology)
Hu, Bohan (Department of Electrical Engineering, Hubei University of Technology) Wu, Tiezhou (Department of Electrical Engineering, Hubei University of Technology) Xiao, Tingyi (Department of Electrical Engineering, Hubei University of Technology) |
1 | Wang, S.L., Carlos, F., Zou, C.Y., Yu, C.M., Li, X.X., Pei, S.J., Wei, X.: Open circuit voltage and state of charge relationship functional optimization for the working state monitoring of the aerial lithium-ion battery pack. J. Sci. Prod. 198, 1090e1104 (2018) |
2 | Wei, Z., Zhao, D., He, H., et al.: A noise-tolerant model parameterization method for lithium-ion battery management system. Appl. Energy 268, 114932 (2020) DOI |
3 | Liu, K., Kang, L., Qiao, P., Cheng, Z.: A brief review on key technologies in the battery management system of electric vehicles. Front. Mech. Eng. 14, 47-64 (2019) DOI |
4 | Long, H.Y., Zhu, C.Y., Huang, B.B., Piao, C.H., Sun, Y.Q.: Model parameters online identification and SOC joint estimation for lithium-ion battery based on a composite algorithm. J Electr Eng Technol 14(4), 1485-1493 (2019) DOI |
5 | Mawonou, K., Eddahech, A., Dumur, D., et al.: Improved state of charge estimation for Li-ion batteries using fractional order extended Kalman filter. J. Power Sources 435(SEP.30), 226710 (2019) DOI |
6 | Lai, X., Zheng, Y., Sun, T.: A comparative study of different circuit models for estimating state-of-charge of lithium-ion batteries. Electrochim. Acta 259, 566-577 (2017) DOI |
7 | Bian, X., Wei, Z., He, J., et al.: A two-step parameter optimization method for low-order model-based state of charge estimation. IEEE Trans. Transp. Electrifcation 7(2), 399-409 (2020) DOI |
8 | Mu, H., Xiong, R., Zheng, H.F., Chang, Y.H., Chen, Z.Y.: A novel fractional order based state-of-charge estimation method for lithium-ion battery. Appl. Energy. 207, 384-393 (2017) DOI |
9 | Plett, G.L.: Extended Kalman filtering for battery management systems of LiPB based HEV battery packs: Part 1. Background. J. Power Sources 134(2), 252e61 (2004) DOI |
10 | Plett, G.L.: Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 2: modeling and identification. J. Power Sources 134(2), 262-276 (2004) DOI |
11 | Plett, G.L.: Sigma-point Kalman filtering for battery management systems of LiPB-based HEV battery packs. Part 2: simultaneous state and parameter estimation. J. Power Sources 161, 1369-1384 (2006) DOI |
12 | Xiong, R., He, H., Sun, F., et al.: Evaluation on state of charge estimation of batteries with adaptive extended Kalman filter by experiment approach. IEEE Trans. Veh. Technol. 62(1), 108-117 (2013) DOI |
13 | Plett, G.L.: Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 3: state and parameter estimation. J. Power Sources 134(2), 277-292 (2004) DOI |
14 | Xiao, R., Shen, J.W., Li, X.Y., Yan, W.S.: Comparisons of modeling and state of charge estimation for lithium-ion battery based on fractional order and integral order methods. Energies 9, 184 (2016) DOI |
15 | Zheng, L., Dang, X.J., Jing, J.B.: A novel open circuit voltage based state of charge estimation for lithium-ion battery by multi-innovation Kalman filter. IEEE Access. 7, 494432e47 (2019) |
16 | Eseye, A.T., Zheng, D., Zhang, J., Wei. D.: Optimal energy management strategy for an isolated industrial microgrid using a modifed particle swarm optimization. In: 2016 IEEE International Conference on Power and Renewable Energy (ICPRE), p. 494e8 (2016) |
17 | Dai, H.F., Xu, T., Zhu, L.T., Wei, X.Z., Sun, Z.C.: Adaptive model parameter identification for large capacity Li-ion batteries on separated time scales. Appl. Energy 184, 119-131 (2016) DOI |
18 | Fleischer, C., Wag, W., Heyn, H.M., Sauer, D.U.: On-line adaptive battery impedance parameter and state estimation considering physical principles in reduced order equivalent circuit battery models: Part 2. Parameter and state estimation. J. Power Sources 260, 27691 (2014) |
19 | Wei, Z., Zhao, J., Rui, X., et al.: Online estimation of power capacity with noise effect attenuation for lithium-ion battery. IEEE Trans. Ind. Electron. 66(7), 5724e35 (2018) DOI |
20 | Ding, F., Wang, X.H., Mao, L., Xu, L.: Joint state and multi-innovation parameter estimation for time-delay linear systems and its convergence based on the Kalman filtering. Digit. Signal Process. 62, 211-223 (2017) DOI |
21 | Papic, V.D., Djurovic, Z.M., Kovacevic, B.D.: Adaptive Doppler-Kalman filter for radar systems. IEEE Proc. Vis. Image Signal Process. 153(3), 379-387 (2006) DOI |
22 | Martinez, C.M., Hu, X., Cao, D., Velenis, E., Gao, B., Wellers, M.: Energy management in plug-in hybrid electric vehicles: recent progress and a connected vehicles perspective. IEEE Trans. Veh. Technol. 66(6), 4534-4549 (2017) DOI |
23 | Xiong, R., Yu, Q.Q., Wang, L.Y., Lin, C.: A novel method to obtain the open circuit voltage for the state of charge of lithiumion batteries in electric vehicles by using H infinity filter. Appl. Energy 207, 346-353 (2017) DOI |