Browse > Article
http://dx.doi.org/10.1007/s43236-021-00353-2

MRAS-based current estimator for DC-DC converters considering time-variant load impedance  

Singh, Shubham Kumar (Department of Electrical and Electronic Engineering, Birla Institute of Technology)
Matwankar, Chetan S. (Department of Electrical and Electronic Engineering, Birla Institute of Technology)
Jee, Manan (Department of Electrical and Electronic Engineering, RTC Institute of Technology)
Alam, Aftab (Department of Electrical and Electronic Engineering, Birla Institute of Technology)
Publication Information
Journal of Power Electronics / v.22, no.2, 2022 , pp. 210-221 More about this Journal
Abstract
The integration of the multiple renewable energy sources (RESs) into a common grid requires a DC bus to be connected with the AC bus of the utility grid using an interlinking converter between the two buses. The DC bus is formed by multiple DC-DC converters fed by RESs. To maintain a fixed DC bus voltage, all of the converters are controlled in a closed loop. The number of DC-DC converters along with the number of corresponding voltage and current sensors becomes staggeringly high for a large number of distributed energy resources (DERs) based systems. Therefore, this paper embarks on state estimation-based closed-loop control of DC-DC converters to significantly reduce the number of sensors. Here, the state variable of the DC current is estimated using a model reference adaptive system (MRAS) for eliminating the current sensors from the hardware design. This estimated state, along with the measured state (capacitor voltage), is used in the state feedback-based closed-loop control of the DC-DC converter. A hardware prototype of a solar photovoltaic (SPV) fed 5 kW boost converter was built and controlled using the proposed current estimator. The experimental results establish the accuracy of the performance parameters of the proposed current estimator.
Keywords
Renewable energy sources; Distributed energy resources; Model reference adaptive system; State estimation; Boost converter; Hybrid micro-grid;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Pan, L., Zhang, J., Wang, K., Wang, B., Pang, Y., Zhu, L.: Direct power control without current sensors for nine-switch inverters. J Power Electron 18(1), 1-10 (2018)   DOI
2 Mishra, S.K., Nayak, K.K., Rana, M.S., Dharmarajan, V.: Switched-boost action based multiport converter. IEEE Trans Ind Appl 55(1), 964-975 (2019)   DOI
3 Rabiul Islam, M., Mahfuz-Ur-Rahman, A.M., Muttaqi, K.M., Sutanto, D.: State-of-the-art of the mediumvoltage power converter technologies for grid integration of solar photovoltaic power plants. IEEE Trans Energy Convers 34(1), 372-384 (2019)   DOI
4 Jain, S., Agarwal, V.: An integrated hybrid power supply for distributed generation applications fed by nonconventional energy sources. IEEE Trans Energy Convers 23(2), 622-631 (2008)   DOI
5 Patel, H., Agarwal, V.: A single-stage single-phase transformerless doubly grounded grid-connected pv interface. IEEE Trans Energy Convers 24(1), 93-101 (2009)   DOI
6 Carrasco, J.M., Franquelo, L.G., Bialasiewicz, J.T., Galvan, E., PortilloGuisado, R.C., Prats, M.A.M., Leon, J.I., Moreno-Alfonso, N.: Power-electronic systems for the grid integration of renewable energy sources: a survey. IEEE Trans Industr Electron 53(4), 1002-1016 (2006)   DOI
7 Zeng, J., Qiao, W., Qu, L., Jiao, Y.: An isolated multiport dc-dc converter for simultaneous power management of multiple different renewable energy sources. IEEE J Emerg Sel Topics Power Electron 2(1), 70-78 (2014)   DOI
8 Walker, G.R., Sernia, P.C.: Cascaded dc-dc converter connection of photovoltaic modules. IEEE Trans Power Electron 19(4), 1130-1139 (2004)   DOI
9 Lin, B.-R.: Dc-dc converter implementation with wide output voltage operation. J Power Electron 20(2), 376-387 (2020)   DOI
10 Monteiro, V., Pinto, J.G., Afonso, J.L.: Experimental validation of a three-port integrated topology to interface electric vehicles and renewables with the electrical grid. IEEE Trans Industr Inf 14(6), 2364-2374 (2018)   DOI
11 Tao, H., Kotsopoulos, A., Duarte, J.L., Hendrix, M.A.M.: Family of multiport bidirectional dc-dc converters. IEE Proc Electr Power Appl 153(3), 451-458 (2006)   DOI
12 Sinha, M., Poon, J., Johnson, B.B., Rodriguez, M., Dhople, S.V.: Decentralized interleaving of parallel connected buck converters. IEEE Trans Power Electron 34(5), 4993-5006 (2019)   DOI
13 Liu, X., Wang, P., Loh, P.C.: A hybrid ac/dc microgrid and its coordination control. IEEE Trans Smart Grid 2(2), 278-286 (2011)   DOI
14 Kang, C., Chen, Z., Zhang, N., Gomis-Bellmunt, O., Barnes, M., Yan, J., Hu, W., Sun, K.: Guest editorial for the special section on enabling very high penetration renewable energy integration into future power systems. IEEE Trans Power Syst 33(3), 3223-3226 (2018)   DOI
15 Kroposki, B., Johnson, B., Zhang, Y., Gevorgian, V., Denholm, P., Hodge, B., Hannegan, B.: Achieving a 100electric power systems with extremely high levels of variable renewable energy. IEEE Power Energy Mag 15(2), 61-73 (2017)   DOI
16 Seyed Mahmoodieh, M.E., Deihimi, A.: Batteryintegrated multiinput step-up converter for sustainable hybrid energy supply. IET Power Electron 12(4), 777-789 (2019)   DOI
17 Liu, Q., Caldognetto, T., Buso, S.: Flexible control of interlinking converters for dc microgrids coupled to smart ac power systems. IEEE Trans Industr Electron 66(5), 3477-3485 (2019)   DOI
18 Moslehi, K., Kumar, R.: A reliability perspective of the smart grid. IEEE Trans Smart Grid 1(1), 57-64 (2010)   DOI
19 Maksimovic, D., Stankovic, A.M., Thottuvelil, V.J., Verghese, G.C.: Modeling and simulation of power electronic converters. Proc IEEE 89(6), 898-912 (2001)   DOI
20 Qian, Z., Abdel-Rahman, O., Al-Atrash, H., Batarseh, I.: Modeling and control of three-port dc/dc converter interface for satellite applications. IEEE Trans Power Electron 25(3), 637-649 (2010)   DOI
21 D'iaz, N.L., Luna, A.C., Vasquez, J.C., Guerrero, J.M.: Centralized control architecture for coordination of distributed renewable generation and energy storage in islanded ac microgrids. IEEE Trans Power Electron 32(7), 5202-5213 (2017)   DOI
22 Kim, S.-K., Ahn, C.K.: Proportional-derivative voltage control with active damping for dc/dc boost converters via current sensorless approach. IEEE Trans Circuits Syst II 68(2), 737-741 (2021)   DOI
23 Dragi'cevi'c, T., Guerrero, J.M., Vasquez, J.C., Skrlec, D.: Supervisory control of an adaptive-droop regulated dc microgrid with battery management capability. IEEE Trans Power Electron 29(2), 695-706 (2014)   DOI
24 Ebrahimi, S., Amiri, N., Huang, Y., Wang, L., Jatskevich, J.: Average-value modeling of diode rectifier systems under asymmetrical operation and internal faults. IEEE Trans Energy Convers 33(4), 1895-1906 (2018)   DOI
25 Davoudi, A., Jatskevich, J., Chapman, P.L., Bidram, A.: Multiresolution modeling of power electronics circuits using modelorder reduction techniques. IEEE Trans Circuits Syst I Regul Pap 60(3), 810-823 (2013)   DOI
26 Yang, F., Ge, H., Yang, J., Wu, H.: Dual-input grid connected photovoltaic inverter with two integrated dc-dc converters and reduced conversion stages. IEEE Trans Energy Convers 34(1), 292-301 (2019)   DOI
27 Wu, C., Chen, Y.: Inductor current measurement strategy for high-precision output current control. IEEE J Emerg Sel Topics in Power Electron 5(3), 1263-1271 (2017)   DOI
28 Corti, M., Tironi, E., Ubezio, G.: Dc networks including multiport dc/dc converters: fault analysis. IEEE Trans Ind Appl 52(5), 3655-3662 (2016)   DOI
29 Zhang, C., Guerrero, J.M., Vasquez, J.C., Coelho, E.A.A.: Control architecture for parallel-connected inverters in uninterruptible power systems. IEEE Trans Power Electron 31(7), 5176-5188 (2016)   DOI
30 Wang, Z., Li, S., Yang, J., Li, Q.: Current sensorless fnite-time control for buck converters with time-varying disturbances. Control Eng Pract 77, 127-137 (2018)   DOI
31 Roy, J., Ayyanar, R.: Sensor-less current sharing over wide operating range for extended-duty-ratio boost converter. IEEE Trans Power Electron 32(11), 8763-8777 (2017)   DOI
32 Wang, J., Zhang, C., Li, S., Yang, J., Li, Q.: Finite-time output feedback control for pwm-based dc-dc buck power converters of current sensorless mode. IEEE Trans Control Syst Technol 25(4), 1359-1371 (2017)   DOI
33 Chen, C., Li, L., Zhang, Q., Tong, Q., Liu, K., Lyu, D., Min, R.: Online inductor parameters identification by small signal injection for sensorless predictive current controlled boost converter. IEEE Trans Industr Inf 13(4), 1554-1564 (2017)   DOI
34 Cho, H., Yoo, S.J., Kwak, S.: State observer based sensor less control using lyapunov's method for boost converters. IET Power Electron 8(1), 11-19 (2015)   DOI
35 Errouissi, R., Al-Durra, A., Muyeen, S.M., El Aroudi, A.: Robust feedback-linearisation control of a boost converter feeding a gridtied inverter for pv applications. IET Power Electronics 11(3), 557-565 (2018)   DOI
36 Leyva, R., Martinez-Salamero, L., Valderrama-Blavi, H., Maixe, J., Giral, R., Guinjoan, F.: Linear state feedback control of a boost converter for large-signal stability. IEEE Trans Circuits Syst I 48(4), 418-424 (2001)   DOI
37 Linares Flores, J., Barahona Avalos, J.L., Bautista Espinosa, C.A.: Passivity-based controller and online algebraic estimation of the load parameter of the dc-to-dc power converter cuk type. IEEE Latin Am Trans 9(1), 784-791 (2011)   DOI
38 Gensior, A., Weber, J., Rudolph, J., Guldner, H.: Algebraic parameter identification and asymptotic estimation of the load of a boost converter. IEEE Trans Industr Electron 55(9), 3352-3360 (2008)   DOI
39 Castro, C.L., Braga, A.P.: Novel cost-sensitive approach to improve the multilayer perceptron performance on imbalanced data. IEEE Trans Neural Netw Learning Syst 24(6), 888-899 (2013)   DOI
40 Lu, X., Guerrero, J.M., Sun, K., Vasquez, J.C., Teodorescu, R., Huang, L.: Hierarchical control of parallel ac-dc converter interfaces for hybrid microgrids. IEEE Trans Smart Grid 5(2), 683-692 (2014)   DOI
41 Bragard, M., Soltau, N., Thomas, S., De Doncker, R.W.: The balance of renewable sources and user demands in grids: power electronics for modular battery energy storage systems. IEEE Trans Power Electron 25(12), 3049-3056 (2010)   DOI