Browse > Article
http://dx.doi.org/10.1007/s43236-022-00480-4

Synthesis of multi-port converters based on series/parallel input pulsating cells and output pulsating cells  

Gao, Ming (College of Electrical Engineering, Zhejiang University)
Yu, Weichen (College of Electrical Engineering, Zhejiang University)
Wang, Shanshan (College of Electrical Engineering, Zhejiang University)
Shi, Jianjiang (College of Electrical Engineering, Zhejiang University)
Publication Information
Journal of Power Electronics / v.22, no.10, 2022 , pp. 1769-1790 More about this Journal
Abstract
Due to their advantages of reduced cost, integrated multi-port converters (MPCs) with fewer components have received extensive attention. In this article, by extracting the concept of series/parallel input pulsating cells (IPCs) and output pulsating cells (OPCs), a set of syntheses for generating MPCs composed of IPCs and OPCs is proposed. When compared with the existing synthesis method for non-isolated MPCs, the proposed approach employs only one inductor and features single-stage power conversion between any two ports, which offers benefits in terms of compact size and high efficiency. Two design examples are shown to demonstrate the worth of proposed methodology. The operation principles are first analyzed. The pulsewidth modulation (PWM) and power control schemes are explained and designed in detail. To design the controllers, small-signal models for each of the operation modes are also extracted. Meanwhile, the characteristics of pulsating cells with different configurations are discussed and compared. The theoretical analysis is validated by simulation and experimental results for different operation conditions.
Keywords
Multi-port converter; Renewable power system; DC-DC; Boost; Topology synthesis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Suntio, T., Leppaaho, J., Huusari, J., Nousiainen, L.: Issues on solar-generator interfacing with current-fed MPP-tracking converters. IEEE Trans. Power Electron. 25(9), 2409-2419 (2010)   DOI
2 Wang, Z., Luo, Q., Wei, Y., Mou, D., Lu, X., Sun, P.: Topology analysis and review of three-port DC-DC converters. IEEE Trans. Power Electron. 35(11), 11783-11800 (2020)   DOI
3 Tao, H., Kotsopoulos, A., Duarte, J.L., Hendrix, A.M.: Transformercoupled multiport ZVS bidirectional DC-DC converter with wide input range. IEEE Trans. Power Electron. 23(2), 771-781 (2008)   DOI
4 Wu, H., Zhang, J., Qin, X., Mu, T., Xing, Y.: Secondary-sideregulated soft-switching full-bridge three-port converter based on bridgeless boost rectifier and bidirectional converter for multiple energy interface. IEEE Trans. Power Electron. 31(7), 4847-4860 (2016)
5 Wu, H., Sun, K., Ding, S., Xing, Y.: Topology derivation of nonisolated three-port DC-DC converters from DIC and DOC. IEEE Trans. Power Electron. 28(7), 3297-3307 (2013)   DOI
6 Ding, S., Wu, H., Xing, Y., Fang, Y., Ma, X.: Topology and control of a family of non-isolated three-port DC-DC converters with a bidirectional cell. In: Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition, pp. 1089-1094 (2013)
7 Faraji, R., Ding, L., Esteki, M., Mazloum, N., Khajehoddin, S.A.: Soft-switched single inductor single stage multiport energy systems. IEEE Trans. Power Electron. 36(10), 11298-11315 (2021)   DOI
8 Nahavandi, A., Hagh, M.T., Sharifian, M.B.B., Danyali, S.: A nonisolated multiinput multioutput DC-DC boost converter for electric vehicle applications. IEEE Trans. Power Electron. 30(4), 1818-1835 (2015)   DOI
9 Zhang, J., Wu, H., Qin, X., Xing, Y.: PWM plus secondary-side phase-shift controlled soft-switching full-bridge three-port converter for renewable power systems. IEEE Trans. Ind. Electron. 62(11), 7061-7072 (2015)   DOI
10 Ravada, B.R., Tummuru, N.R., Ande, B.N.L.: Photovoltaic-wind and hybrid energy storage integrated multi-source converter configuration for DC microgrid applications. IEEE Trans. Sustain. Energy. 12(1), 83-91 (2021)   DOI
11 Alajmi, B.N., Marei, M.I., Abdelsalam, I.: A multiport DC-DC converter based on two-quadrant inverter topology for PV systems. IEEE Trans. Power Electron. 36(1), 522-532 (2021)
12 Zeng, J., Du, X., Yang, Z.: A multiport bidirectional DC-DC converter for hybrid renewable energy system integration. IEEE Trans. Power Electron. 36(11), 12281-12291 (2021)   DOI
13 Faraji, R., Farzanehfard, H.: Fully soft-switched multiport DC-DC converter with high integration. IEEE Trans. Power Electron. 36(2), 1901-1908 (2021)   DOI
14 Bhattacharjee, A.K., Kutkut, N., Batarseh, I.: Review of multiport converters for solar and energy storage integration. IEEE Trans. Power Electron. 34(2), 1431-1445 (2019)   DOI
15 Rostami, S., Abbas, V., Parastesh, M.: Design and implementation of a multiport converter using Z-source converter. IEEE Trans. Ind. Electron. 68(10), 9731-9741 (2021)   DOI
16 ROHM.: Efficiency of Buck Converter. Application Note. No. 64AN035E. 1-15. https://fscdn.rohm.com/en/products/databook/applinote/ic/power/switching_regulator/buck_converter_efficiency_app-e.pdf (2017). Accessed 1 May 2022
17 Hawke, J.T., Krishnamoorthy, H.S., Enjeti, P.N.: A family of new multiport power-sharing converter topologies for large grid-connected fuel cells. IEEE J. Emerg. Sel. Top. Power Electron. 2(4), 962-971 (2014)   DOI
18 Ajami, A., Shayan, P.A.: Soft switching method for multiport DC/DC converters applicable in grid connected clean energy sources. IET Power Electron. 8(7), 1246-1254 (2015)   DOI
19 Wang, K., Zhu, R., Wei, C., Liu, F., Wu, X., Liserre, M.: Cascaded multilevel converter topology for large-scale photovoltaic system with balanced operation. IEEE Trans. Ind. Electron. 66(10), 7694-7705 (2019)   DOI
20 Faraji, R., Farzanehfard, H., Kampitsis, G., Mattavelli, M., Matioli, E., Esteki, M.: Fully soft-switched high step-up nonisolated three-port DC-DC converter using GaN HEMTs. IEEE Trans. Ind. Electron. 67(10), 8371-8380 (2020)   DOI
21 Khan, S.A., Islam, M.R., Guo, Y., Zhu, J.: A new isolated multiport converter with multi-directional power flow capabilities for smart electric vehicle charging stations. IEEE Trans. Appl. Supercond. 29(2), 0602504 (2019)
22 Leppaaho, J., Suntio, T.: Solar generator interfacing with a Current- Fed Superbuck converter implemented by duality-transformation methods. In: The 2010 International Power Electronics Conference, pp. 680-687 (2010)
23 Zhu, H., Zhang, D., Zhang, B., Zhou, Z.: A nonisolated three-port DC-DC converter and three-domain control method for PV-battery power systems. IEEE Trans. Ind. Electron. 62(8), 4937-4947 (2015)   DOI
24 Chen, G., Jin, Z., Liu, Y., Zhang, J., Qing, X.: Programmable topology derivation and analysis of integrated three-port DC-DC converters with reduced switches for low-cost applications. IEEE Trans. Ind. Electron. 66(9), 6649-6660 (2019)
25 Zhang, P., Chen, Y., Kang, Y.: Nonisolated wide operation range three-port converters with variable structures. IEEE J. Emerg. Sel. Top. Power Electron. 5(2), 854-869 (2017)   DOI
26 Mishra, S.K., Nayak, K.K., Rana, M.S., Dharmarajan, V.: Switched-boost action based multiport converter. IEEE Trans. Ind. Appl. 55(1), 964-975 (2019)   DOI