Browse > Article
http://dx.doi.org/10.1007/s43236-022-00476-0

Electromagnetic torque and reactive torque control of induction motor drives to improve vehicle variable flux operation and torque response  

Yang, Anxin (School of Electrical Engineering, Guangxi University)
Lu, Ziguang (School of Electrical Engineering, Guangxi University)
Publication Information
Journal of Power Electronics / v.22, no.10, 2022 , pp. 1699-1712 More about this Journal
Abstract
This paper investigates the decoupling and fast torque response for induction motor drives during vehicle operation with variable flux. A torque control method considering flux transient information is proposed, which takes the electromagnetic torque and reactive torque as state variables for modeling and feedback linearization control. Since the electromagnetic torque is aligned with the active power, and the reactive torque is aligned with the reactive power and perpendicular to the electromagnetic torque, the stator dq-axis current control of the field-oriented control (FOC) is replaced by the simultaneous control of the electromagnetic torque and reactive torque. The physical concept of the inner loop changes from the current to the torque, and the modulation signals from the voltage-type to the power-type. This strategy improves the decoupling performance under variable flux, and the fast response capability of the torque. In addition, it eliminates the complex rotation coordinate transformation. A comparative experiment was carried out between the proposed method and the FOC. Both methods have good steady-state performance. However, the proposed method has better torque response and decoupling.
Keywords
Induction motor drives; Decoupling; Torque response; Variable flux; Reactive torque; Torque control;
Citations & Related Records
연도 인용수 순위
  • Reference
1 El-Taweel, N.A., Khani, H., Farag, H.E.Z.: Analytical size estimation methodologies for electrified transportation fueling infrastructures using publicdomain market data. IEEE Trans. Transport. Electrific. 5(3), 840-851 (2019)   DOI
2 Zhong Q.: Power Electronics-Enabled Autonomous Power Systems: Next Generation Smart Grids. (2020)
3 Xu, X., Mathur, R.M., Jiang, J., Rogers, G.J., Kundur, P.: Modeling effects of system frequency variations in induction motor dynamics using singular perturbations. IEEE Trans. Power Syst. 15(2), 764-770 (2000)
4 Holtz, J.: Sensorless control of induction motor drives. Proc. IEEE 90(8), 1359-1394 (2002)   DOI
5 Attaianese, C., Monaco, M., Di, S.I., Tomasso, G.: A variational approach to mtpa control of induction motor for evs range optimization. IEEE Trans. Veh. Technol. 69(7), 7014-7025 (2020)   DOI
6 Guzinski, J., Abu-Rub, H., Diguet, M., Krzeminski, Z., Lewicki, A.: Speed and load torque observer application in high-speed train electric drive. IEEE Trans. Ind. Electron. 57(2), 565-574 (2010)   DOI
7 Forestieri, J.N., Farasat, M., Trzynadlowski, A.M.: Indirect realand reactive-power control of induction motor drives. IEEE J. Emerg. Sel. Top. Power Electron. 6(4), 2109-2125 (2018)   DOI
8 Chiassion, J.N.: Modeling and High Performance Control of Electric Machines. IEEE Press Series on Power Engineering, New York (2005)
9 Thike, R., Pillay, P.: Characterization of a variable flux machine for transportation using a vector-controlled drive. IEEE Trans. Transport. Electrific. 4(2), 494-505 (2018)   DOI
10 Foo, G.H.B., Zhang, X.: Constant switching frequency based direct torque control of interior permanent magnet synchronous motors with reduced ripples and fast torque dynamics. IEEE Trans. Power Electron. 31(9), 6485-6493 (2016)   DOI
11 Naxin, C., Chenghui, Z., Fengtao, S.: Study on efficiency optimization and high response control of induction motor. Proc. CSEE 25(11), 118-123 (2005)
12 Blaschke, F.: The principle of field orientation as applied to the new transvector closed loop control system for rotating-field machines. Siemens Rev. 34, 162-165 (1972)
13 Marino, R., Peresada, S., Tomei, P.: Output feedback control of current-fed induction motors with unknown rotor resistance. IEEE Trans. Control Syst. Technol. 4(4), 336-347 (1996)   DOI
14 Krzeminski, Z.: Nonlinear control of induction motor. In: 10th IFAC World Congress, pp. 357-362 (1987)
15 Muduli, U.R., Beig, A.R., Jaafari, K.A., Alsawalhi, J.Y., Behera, R.K.: Interrupt-free operation of dual-motor four-wheel drive electric vehicle under inverter failure. IEEE Trans. Transport. Electrific. 7(1), 329-338 (2021)   DOI
16 Takahashi, I., Noguchi, T.: A new quick-response and high-efficiency control strategy of an induction motor. IEEE Trans. Ind. Appl. IA-22, 820-827 (1986)   DOI
17 Sorchini, Z., Krein, P.T.: Formal derivation of direct torque control for induction machines. IEEE Trans. Power Electron. 21(5), 1428-1436 (2006)   DOI
18 Jardn-Kojakhmetov, H., Scherpen, J.M.A.: Model order reduction and composite control for a class of slow-fast systems around a non-hyperbolic point. IEEE Control. Syst. Lett. 1(1), 68-73 (2017)   DOI
19 Aller, J.M., Bueno, A., Paga, T.: Power system analysis using space-vector transformation. IEEE Trans. Power Syst. 17(4), 957-965 (2002)   DOI
20 Pellegrino, G., Vagati, A., Boazzo, B., Guglielmi, P.: Comparison of induction and pm synchronous motor drives for ev application including design examples. IEEE Trans. Ind. Appl. 48(6), 2322-2332 (2012)   DOI
21 Lu, Z., Zhang, R., Hu, L., Gan, L., Lin, J., Gong, P.: Model predictive control of induction motor based on amplitude-phase motion equation. IET Power Electron. 12(9), 2400-2406 (2019)   DOI
22 Alsofyani, I.M., Bak, Y., Lee, K.-B.: Fast torque control and minimized sector-flux droop for constant frequency torque controller based dtc of induction machines. IEEE Trans. Power Electron. 34(12), 12141-12153 (2019)   DOI
23 Marino, R., Peresada, S., Valigi, P.: Adaptive inputoutput linearizing control of induction motors. IEEE Trans. Autom. Control. 38(2), 208-221 (1993)   DOI