Browse > Article
http://dx.doi.org/10.1007/s43236-022-00471-5

Experimental verification of interleaved hybrid DC/DC boost converter  

Celik, M. Ali (Electrical and Energy Department, Vocational School, Agri Ibrahim Cecen University)
Genc, Naci (Electrical and Electronics Engineering Department, Engineering Faculty, Yalova University)
Uzmus, Hasan (Electrical and Electronics Engineering Department, Engineering Faculty, Van Yuzuncu Yil University)
Publication Information
Journal of Power Electronics / v.22, no.10, 2022 , pp. 1665-1675 More about this Journal
Abstract
In this study, an improved interleaved hybrid DC/DC boost converter used for high-power applications with high voltage gain was proposed. The proposed DC/DC boost converter increases low-input voltage to the desired high-output voltage with a wide duty cycle range through the hybrid structure, thereby prolonging the lifetime of the proposed converter by decreasing the current on circuit components. An extra filter for input current ripples is unnecessary. The proposed converter is less complex and has easier control than the converters used for high voltage gain. The proposed converter was operated when the duty cycle (d) was larger and smaller than 0.5. It was also analyzed theoretically, and the average- and small-signal circuits were obtained to show its stability. The proposed converter was controlled with the conventional control method by using a modern digital signal processor TMS320F28379D board. The proposed converter and its controller were operated under different conditions.
Keywords
DC/DC converter; Interleaved; Hybrid; PI control; DSP TMS320F28379D;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Genc, N., Koc, Y.: Experimental verification of an improved soft-switching cascade boost converter. Electr. Power Syst. Res. 149, 1-9 (2017)   DOI
2 Zhao, Q., Lee, F.-C.: High-efficiency, high step-up DC-DC converters. IEEE Trans. Power Electron. 18, 65-73 (2003)   DOI
3 Ling, R., Zhao, G., Huang, Q.: High step-up interleaved boost converter with low switch voltage stress. Electr. Power Syst. Res. 128, 11-18 (2015)   DOI
4 Bellar, M.-D., Watanabe, E.-H., Mesquita, A.-C.: Analysis of the dynamic and steady-state performance of Cockcroft-Walton cascade rectifiers. IEEE Trans. on Power Electron. (1992).
5 Celebi, M.: Efficiency optimization of a conventional boost DC/ DC converter. Electr Eng (2018).
6 Rosas-Caro, J.-C., Ramirez, J.-M., Garcia-Vite, P.-M.: Novel DC-DC multilevel boost converter. IEEE. In: Power Electron. Specialists Conference, (PESC). (2008)
7 Rodriguez, J., Lai, J.-S., Peng, F.-Z.: Multilevel inverters: a survey of topologies, controls, and applications. IEEE Trans. Ind. Electron. 49, 724-728 (2002)   DOI
8 Dias, J.-C., Lazzarin, T.-B.: A family of voltage-multiplier unidirectional single-phase hybrid boost PFC rectifiers. IEEE Trans. Ind. Electron. 65, 232-241 (2017)   DOI
9 Prazenica, M., Frivaldsky, M., Morgos, J., Hanko, B.: Comparison of perspective dual interleaved boost converters with demagnetizing circuit. Electr. Eng. 102, 13-25 (2020)   DOI
10 Kascak, S., Prazenica, M., Jarabicova, M., Paskala, M.: Interleaved DC/DC boost converter with coupled inductors. Adv Electr Electron Eng (2018). https:// doi. org/ 10. 15598/ aeee. v16i2. 2413   DOI
11 Kim, S.-J., Do, H.-L.: Interleaved flyback converter with a lossless snubber. Int. Rev. Electr. Eng. (IREE) 9(5), 882-888 (2014)   DOI
12 Azib, T., Bendali, M., Larouci, C., Hemsas, K.-E.: Fault tolerant control of interleaved buck converter for automotive application. Int. Rev. Electr. Eng. (IREE) 10(3), 336-343 (2015)   DOI
13 Tseng, K.-C., Chen, J.-Z., Lin, J.-T., Huang, C.-C., Yen, T.-H.: High step-up interleaved forward-flyback boost converter with three-winding coupled inductors. IEEE Trans. Power Electron. 30, 4696-4703 (2014)
14 Celik, E., Ozturk, N.: First application of symbiotic organisms search algorithm to off-line optimization of PI parameters for DSP-based DC motor drives. Neural Comput. Appl. 30, 1689-1699 (2018)   DOI
15 Hauge, F., Lie, B.: Relaxed Ziegler-Nichols closed loop tuning of PI controllers. MIC Model. Identif. Control 34(2), 83-97 (2013)   DOI
16 Mayo-Maldonado, J.-C., Rosas-Caro, J.-C., Salas-Cabrera, R., Gonzalez-Rodriguez, A., Ruiz-Martinez, O.-F., Castillo-Gutierrez, R., Cisneros-Villegas, H.: State space modeling and control of the DC-DC multilevel boost converter. In: 20th International Conference on Electronics, Communications and Computers (CONIELECOMP). (2010)
17 Rosas-Caro, J.-C., Ramirez, J.-M., Peng, F.-Z., Valderrabano, A.: A DC-DC multilevel boost converter. IET Power Electron. 3, 129 (2010)   DOI
18 Abdelmalek, S., Dali, A., Bettayeb, M., Bakdi, A.: A new effective robust nonlinear controller based on PSO for interleaved DC-DC boost converters for fuel cell voltage regulation. Soft Comput. 24, 17051-17064 (2020)   DOI
19 Shahir, F.-M., Babaei, E.: A new structure for non-isolated boost DC/DC converter based on voltage-lift technique. In: 8th Power Electronics & Drives: Systems and Technologies Conference (PEDSTC). (2017)
20 Samuel, V.-J., Keerthi, G., Mahalingam, P.: Interleaved quadratic boost DC-DC converter with high voltage gain capability. Electr. Eng. 102, 651-662 (2020)   DOI
21 Genc, N., Uzmus, H.: Digital control of bridgeless interleaved pfc boost converter based on predicted input current. IETE J. Res. (2019). https://doi.org/10.1080/03772063.2019.1682070   DOI
22 Ziegler, J.-G., Nichols, N.-B.: Optimum settings for automatic controllers. Trans. SME 64(11), 759-768 (1942)
23 Jou, H.L., Wu, K.-D., Wu, J.-C., Lin, Y.-Z., Su, L.-W.: Asymmetric isolated unidirectional multi-level DC-DC power converter. Eng. Sci. Technol. Int. J. 22, 894-898 (2019)
24 Babaei, E., Mahmoodieh, M.-E.-S.: Calculation of output voltage ripple and design considerations of SEPIC converter. IEEE Trans. Ind. Electron. 61, 1213-1222 (2013)   DOI
25 Rex, S.-R., Praba, D.-M.-S.-R.: Design of PWM with four transistor comparator for DC-DC boost converters. Microprocess. Microsyst. 72, 102844 (2020)   DOI
26 Mohan, N., Undeland, T.-M., Robbins, W.-P.: Power Electronics: Converters, Applications, and Design. Wiley, Hoboken (2003)
27 Lange, A.-D.-B., Soeiro, T.-B., Ortmann, M.-S., Heldwein, M.-L.: Three-level single-phase bridgeless PFC rectifiers. IEEE Trans. Power Electron. 30(6), 2935-2949 (2014)
28 Sahu, P.-K., Jena, S., Babu, B.-C.: Power management and bus voltage control of a battery backup-based stand-alone PV system. Electr. Eng. 104, 97-110 (2021)   DOI
29 Goudarzian, A., Khosravi, A., Raeisi, H.-A.: Modeling, design and control of a modified flyback converter with ability of righthalf- plane zero alleviation in continuous conduction mode. Eng. Sci. Technol. Int. J. 26, 101007 (2021)
30 Shahir, F.-M., Babaei, E., Farsadi, M.: Extended topology for a boost DC-DC converter. IEEE Trans. Power Electron. 34, 2375-2385 (2018)   DOI
31 Rashid, M.-H.: Power electronics: Circuits, Devices, and Applications. Pearson Education, Noida (2009)
32 Blahnik, V., Peroutka, Z., Zak, J., Komrska, T.: Traction converter with medium-frequency transformer for railway applications: direct current control of primary active rectifiers. In: IEEE 13th European Conference on Power Electronics and Applications (2009)