Browse > Article
http://dx.doi.org/10.1007/s43236-020-00199-0

Cost-effective synchronization strategy for distributed generators in islanded microgrids  

Pham, Minh-Duc (Department of Electrical Engineering, University of Ulsan)
Hoang, Van-Tuan (Department of Electrical Engineering, University of Ulsan)
Lee, Hong-Hee (Department of Electrical Engineering, University of Ulsan)
Publication Information
Journal of Power Electronics / v.21, no.3, 2021 , pp. 583-589 More about this Journal
Abstract
A microgrid (MG) is an effective way to integrate various distributed generators (DGs) into a power distribution system. The synchronization of DG voltage with MG voltage is indispensable to prevent inrush currents before connection to a MG system and for working in parallel with other DGs in the MG. In the past, synchronization in terms of both phase and magnitude was realized using additional voltage sensors to measure the MG voltage. However, this increased the system cost. In this paper, a cost-effective synchronization strategy is proposed to allow a DG to connect with an islanded MG system without any additional voltage sensors. The feasibility and effectiveness of the proposed strategy were validated by experiment with a scaled-down islanded microgrid.
Keywords
Islanded microgrid (MG); Distributed generator; DG-MG synchronization;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Mariam, L., Basu, M., Conlon, M.F.: Microgrid: architecture, policy and future trends. Renew. Sustain. Energy Rev. 64, 477-489 (2016)   DOI
2 Sun, H., et al.: Review of challenges and research opportunities for voltage control in smart grids. IEEE Trans. Power Syst. 34(4), 2790-2801 (2019)   DOI
3 Nejabatkhah, F., Li, Y.W., Tian, H.: Power quality control of smart hybrid AC/DC microgrids: an overview. IEEE Access 7, 52295-52318 (2019)   DOI
4 Pham, D.M., Lee, H.: Effective coordinated virtual impedance control for accurate power sharing in islanded microgrid. IEEE Trans. Ind. Electron. 68(3), 2279-2288 (2020). https://doi.org/10.1109/TIE.2020.2972441   DOI
5 Cintuglu, M.H., Youssef, T., Mohammed, O.A.: Development and application of a real-time testbed for multiagent system interoperability: a case study on hierarchical microgrid control. IEEE Trans. Smart Grid 9(3), 1759-1768 (2018)   DOI
6 Han, Y., Li, H., Shen, P., Coelho, E.A.A., Guerrero, J.M.: Review of active and reactive power sharing strategies in hierarchical controlled microgrids. IEEE Trans. Power Electron. 32(3), 2427-2451 (2017)   DOI
7 Yousefian, R., Bhattarai, R., Kamalasadan, S.: Transient stability enhancement of power grid with integrated wide area control of wind farms and synchronous generators. IEEE Trans. Power Syst. 32(6), 4818-4831 (2017)   DOI
8 Olivares, D.E., et al.: Trends in microgrid control. IEEE Trans. Smart Grid 5(4), 1905-1919 (2014)   DOI
9 Park, S., Kwon, M., Choi, S.: Reactive power P O anti-islanding method for a grid-connected inverter with critical load. IEEE Trans. Power Electron. 34(1), 204-212 (2019)   DOI
10 Zhang, W., Liu, H., Wang, W., Loh, P.C.: Seamless transfer scheme for parallel PV inverter system. IET Power Electron. 13(5), 1051-1058 (2020)   DOI
11 Hoang, T.V., Lee, H.: An adaptive virtual impedance control scheme to eliminate the reactive-power-sharing errors in an islanding meshed microgrid. IEEE J. Emerg. Sel. Top. Power Electron. 6(2), 966-976 (2018)   DOI
12 IEEE standard for interconnecting distributed resources with electric power systems. IEEE Std 1547-2003 pp. 1-28 (2003)
13 Shi, D., et al.: A distributed cooperative control framework for synchronized reconnection of a multi-bus microgrid. IEEE Trans. Smart Grid 9(6), 6646-6655 (2018)   DOI
14 Yazdavar, A.H., Azzouz, M.A., El-Saadany, E.F.: A novel decentralized control scheme for enhanced nonlinear load sharing and power quality in islanded microgrids. IEEE Trans. Smart Grid 10(1), 29-39 (2019)   DOI
15 Zhou, J., Cheng, P.-T.: A modified Q-V droop control for accurate reactive power sharing in distributed generation microgrid. In: 2017 IEEE Energy Conversion Congress and Exposition (ECCE). IEEE (2017).https://doi.org/10.1109/ECCE.2017.8096713   DOI
16 De Brabandere, K., Bolsens, B., Van den Keybus, J., Woyte, A., Driesen, J., Belmans, R.: A voltage and frequency droop control method for parallel inverters. IEEE Trans. Power Electron. 22(4), 1107-1115 (2007)   DOI
17 Zhu, Y., Zhuo, F., Wang, F., Liu, B., Zhao, Y.: A wireless load sharing strategy for islanded microgrid based on feeder current sensing. IEEE Trans. Power Electron. 30(12), 6706-6719 (2015)   DOI
18 Sun, Y., Hou, X., Yang, J., Han, H., Su, M., Guerrero, J.M.: New perspectives on droop control in AC microgrid. IEEE Trans. Ind. Electron. 64(7), 5741-5745 (2017)   DOI
19 Trujillo Rodriguez, C., Velasco de la Fuente, D., Garcera, G., Figueres, E., Guacaneme Moreno, J.A.: Reconfigurable control scheme for a PV microinverter working in both grid-connected and island modes. IEEE Trans. Ind. Electron. 60(4), 1582-1595 (2013)   DOI
20 Blaabjerg, F., Teodorescu, R., Liserre, M., Timbus, A.V.: Overview of control and grid synchronization for distributed power generation systems. IEEE Trans. Ind. Electron. 53(5), 1398-1409 (2006)   DOI
21 Zhang, X., Xia, D., Fu, Z., Wang, G., Xu, D.: An improved feedforward control method considering PLL dynamics to improve weak grid stability of grid-connected inverters. IEEE Trans. Ind. Appl. 54(5), 5143-5151 (2018)   DOI
22 Tran, T., Chun, T., Lee, H., Kim, H., Nho, E.: PLL-based seamless transfer control between grid-connected and islanding modes in grid-connected inverters. IEEE Trans. Power Electron. 29(10), 5218-5228 (2014)   DOI
23 Mehrizi-Sani, A., Iravani, R.: Potential-function based control of a microgrid in islanded and grid-connected modes. IEEE Trans. Power Syst. 25(4), 1883-1891 (2010)   DOI
24 Hoang, T.V., Lee, H.: Virtual impedance control scheme to compensate for voltage harmonics with accurate harmonic power sharing in islanded microgrids. IEEE J. Emerg. Sel. Top. Power Electron. (2020). https://doi.org/10.1109/JESTPE.2020.2983447   DOI