Browse > Article
http://dx.doi.org/10.1007/s43236-021-00311-y

Parameter identification for dual-phase shift modulated DAB converters  

Duong, Tan‑Quoc (Department of Electrical, Electronic and Computer Engineering, University of Ulsan)
Choi, Sung‑Jin (Department of Electrical, Electronic and Computer Engineering, University of Ulsan)
Publication Information
Journal of Power Electronics / v.21, no.12, 2021 , pp. 1866-1877 More about this Journal
Abstract
Deadbeat control is an effective method for controlling the output voltage of dual active bridge converters. However, its effectiveness depends on the model parameter accuracy. In practice, the model parameters of dual active bridge converters vary depending on the operation conditions, manufacturing tolerances, and calendar aging. This leads to performance degradation and causes steady-state errors of the output voltage. To overcome the effect of parameter mismatch, this study proposed an algorithm to achieve the online identification of two model parameters, i.e., the series inductor and the output capacitor. Based on a least-squares analysis, the online parameter identification of a dual active bridge converter under dual-phase shift modulation is implemented to obtain the actual values of model parameters. Consequently, the steady-state errors of the output voltage are immediately mitigated after every sampling period when the optimal predicted phase shift duty ratios are updated. The proposed algorithm was tested through both simulations and experiments to verify its effectiveness.
Keywords
Dual active bridge; Deadbeat control; Dual-phase shift; Mismatch; Parameter identification;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Zhao, B., Song, Q., Liu, W., Sun, Y.: Overview of dual-active-bridge isolated bidirectional DC-DC converter for high-frequency-link power-conversion system. IEEE Trans. Power Electron. 29(8), 4091-4106 (2014)   DOI
2 Hou, N., Li, Y.W.: Overview and comparison of modulation and control strategies for a nonresonant single-phase dual-active-bridge DC-DC converter. IEEE Trans. Power Electron. 35(3), 3148-3172 (2020)   DOI
3 Hou, N., Song, W., Wu, M.: Minimum-current-stress scheme of dual active bridge DC-DC converter with unified phase-shift control. IEEE Trans. Power Electron. 31(12), 8552-8561 (2016)   DOI
4 Zhao, B., Song, Q., Liu, W., Sun, W.: Current-stress-optimized switching strategy of isolated bidirectional DC-DC converter with dual-phase-shift control. IEEE Trans. Ind. Electron. 60(10), 4458-4467 (2013)   DOI
5 Guo, Z., Luo, Y., Sun, K.: Parameter identification of the series inductance in DAB converters. IEEE Trans. Power Electron. 36(7), 7395-7399 (2021)   DOI
6 Wei, S., Zhao, Z., Li, K., Yuan, L., Wen, W.: Deadbeat current controller for bidirectional dual-active-bridge converter using an enhanced SPS modulation method. IEEE Trans. Power Electron. 36(2), 1274-1279 (2021)   DOI
7 Vidal, A., et al.: A method for identification of the equivalent inductance and resistance in the plant model of current-controlled grid-tied converters. IEEE Trans. Power Electron. 30(12), 7245-7261 (2015)   DOI
8 Texas Instruments: Analog-passive devices application report (1999)
9 Zhao, B., Song, Q., Liu, W.: Power characterization of isolated bidirectional dual-active-bridge DC-DC converter with dual-phase-shift control. IEEE Trans. Power Electron. 27(9), 4172-4176 (2012)   DOI
10 Kwak, S., Moon, U.C., Park, J.C.: Predictive-control-based direct power control with an adaptive parameter identification technique for improved AFE performance. IEEE Trans. Power Electron. 29(11), 6178-6187 (2014)   DOI
11 An, F., Song, W., Yu, B., Yang, K.: "Model predictive control with power self-balancing of the output parallel DAB DC-DC converters in power electronic traction transformer." IEEE J. Emerg. Sel. Top. Power Electron. 6(4), 1806-1818 (2018)   DOI
12 Dutta, S., Hazra, S., Bhattacharya, S.: A digital predictive current-mode controller for a single-phase high-frequency transformer-isolated dual-active bridge DC-to-DC converter. IEEE Trans. Ind. Electron. 63(9), 5943-5952 (2016)   DOI
13 Wilson, P.: The Circuit Designer's Companion, 3rd edn. Newnes, London (2012)
14 E. K. P. Chong and S. H. Zak, An Introduction to Optimization, Fourth ed. Wiley, 2013.
15 Gualous, H., Bouquain, D., Berthon, A., Kaufmann, J.M.: Experimental study of supercapacitor serial resistance and capacitance variations with temperature. J. Power Sources 123(1), 86-93 (2003)   DOI