Browse > Article
http://dx.doi.org/10.1007/s43236-021-00314-9

Permanent magnet temperature estimation of high power density permanent magnet synchronous machines by considering magnetic saturation  

Gao, Jian (College of Electrical and Information Engineering, Hunan University)
Li, Chengxu (College of Electrical and Information Engineering, Hunan University)
Zhang, Wenjuan (Department of Electronic and Electrical Engineering, Hunan University)
Huang, Shoudao (College of Electrical and Information Engineering, Hunan University)
Publication Information
Journal of Power Electronics / v.21, no.12, 2021 , pp. 1804-1811 More about this Journal
Abstract
This paper develops a method for permanent magnet (PM) temperature estimation in high power density permanent magnet synchronous machines (PMSMs) by considering magnetic saturation. Most of the previous methods in the literature are based on unsaturation. In this paper, the temperature estimation method of PMs is improved by adding a saturation coefficient. Once a machine is assembled, the inner and outer PM surfaces cannot be seen. Thus, it is impossible to realize visualization measurement of the permanent magnet temperature distribution. In this case, temperature sensors attached to the PM cam be used. However, the cost and robustness need to be considered. Therefore, in this paper, by solving a magnetic-thermal coupling finite element model, the temperature field distribution of a high power density PMSM is obtained. Then, an experimental platform is built to verify the model. Finally, the model is used to verify the reliability of the modified estimation method.
Keywords
Temperature estimation; Magnetic saturation; Permanent magnet synchronous machine (PMSM); Finite element;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Lee, J.-Y., Lee, S.-H., Lee, G.-H., Hong, J.-P., Hur, J.: Determination of parameters considering magnetic nonlinearity in an interior permanent magnet synchronous motor. IEEE Trans. Mag. 42(4), 1303-1306 (2006)   DOI
2 Zhu, G., Liu, X., Li, L.: Coupled electromagnetic-thermal-fluidic analysis of permanent magnet synchronous machines with a modified model. CES Trans. Electri. Mach. Syst. 3(2), 204-209 (2019)   DOI
3 Betin, F., et al.: Trends in electrical machines control: Samples for classical, sensorless, and fault-tolerant techniques. IEEE Ind. Electron. Mag. 8(2), 43-55 (2014)   DOI
4 Lu, X., Iyer, K.L.V., Mukherjee, K., Ramkumar, K., Kar, N.C.: Investigation of permanent-magnet motor drives incorporating damper bars for electrified vehicles. IEEE Trans. Ind. Electron. 62(5), 3234-3244 (2015)   DOI
5 Betin, F., Capolino, G., Casadei, D., Kawkabani, B., Bojoi, R., Harnefors, L., Levi, E., Parsa, L., Fahimi, B.: Trends in electrical machines control: samples for classical, sensorless, and faulttolerant techniques. IEEE Ind. Electron. 8(2), 43-55 (2014)   DOI
6 Grobler, A.J., Holm, S.R., van Schoor, G.: Thermal modelling of a high-speed permanent magnet synchronous machine. Proc. IEEE Int. Conf. Electron. Mach. Drives Conf. (IEMD) (2013). https://doi.org/10.1109/IEMDC.2013.6556270   DOI
7 Jahns, T.: Getting rare-earth magnets out of EV traction machines: a review of the many approaches being pursued to minimize or eliminate rare-earth magnets from future EV drivetrains. IEEE Electron. Mag. 5(1), 6-18 (2017)   DOI
8 Sebastian, T.: Temperature effects on torque production and efficiency of PM motors using NdFeB magnets. IEEE Trans. Ind. Appl. 31(12), 353-357 (1995)   DOI
9 Kral, C., Haumer, A., Lee, S.B.: A practical thermal model for the estimation of permanent magnet and stator winding temperatures. IEEE Trans. Power. Electron. 29(1), 455-464 (2014)   DOI
10 Jung, H.-S., Kim, H., Sul, S.-K.: Temperature estimation of IPMSM by using fundamental reactive energy considering variation of inductances. IEEE Trans. Power. Electron. 36(5), 5771-5783 (2021)   DOI
11 Specht, A., Wallscheid, O., Bocker, J.: Determination of rotor temperature for an interior permanent magnet synchronous machine using a precise fux observer. In: Proceedings of IEEE International Power Electronics Conference (IPEC), pp. 501-1507 (2014)
12 Feng, G., Lai, C., Kar, N.: Expectation maximization particle filter and Kalman filter based permanent magnet temperature estimation for PMSM condition monitoring using high-frequency signal injection. IEEE Trans. Ind. Inf. 13(2), 1261-1270 (2017)   DOI
13 Feng, G., Lai, C., Tjong, J., Kar, N.C.: Noninvasive Kalman filter based permanent magnet temperature estimation for permanent magnet synchronous machines. IEEE Trans. Power Electron. 33(12), 10673-10682 (2018)   DOI
14 Jung, H.S., Park, D., Kim, H., Sul, S., Berry, D.J.: Non-invasive magnet temperature estimation in IPMSM by using high frequency inductance with pulsating high frequency voltage signal injection. IEEE Trans. Ind. Appl. 55(3), 3076-3086 (2019)   DOI
15 Fernandez, D., Martinez, M., Diaz Reigosa, D., Guerrero, J.M., Alvarez, C.M.S., Briz, F.: Influence of magnetoresistance and temperature on permanent magnet condition estimation methods using high-frequency signal injection. IEEE Trans. Ind. Appl. 54(5), 4218-4226 (2018)   DOI
16 Reigosa, D., Fernandez, D., Tanimoto, T.: Comparative analysis of BEMF and pulsating high-frequency current injection methods for PM temperature estimation in PMSMs. IEEE Trans. Power. Electron. 32(5), 3691-3699 (2017)   DOI
17 Xiao, S., Griffo, A.: PWM-Based Flux linkage and rotor temperature estimations for permanent magnet synchronous machines. IEEE Trans. Power Electron. 35(6), 6061-6069 (2020)   DOI
18 Liu, K., Zhu, Z.Q., Zhang, Q., Zhang, J.: Influence of non-ideal voltage measurement on parameter estimation in permanent-magnet synchronous machines. IEEE Trans. Ind. Electron. 59(6), 2438-2447 (2012)   DOI
19 Jiang, Y., Wang, D., Chen, J.: Electromagnetic-thermal-fluidic analysis of permanent magnet synchronous machine by bidirectional method. IEEE Trans. Mag. 54(3), 8102705 (2018)