Browse > Article
http://dx.doi.org/10.1007/s43236-021-00326-5

Novel decoupling control scheme for IPOP and IPOS modular DC-DC converters  

Jung, Choul‑Woo (Research Institute of Hyundai Motor Co.)
Le, Duc Dung (Department of Electrical Engineering, Yeungnam University)
Lee, Dong‑Choon (Department of Electrical Engineering, Yeungnam University)
Publication Information
Journal of Power Electronics / v.21, no.12, 2021 , pp. 1793-1803 More about this Journal
Abstract
This paper proposes a novel decoupling control scheme for input-parallel modular dual active bridge (DAB) DC-DC converters, where the input current sharing (ICS) control loops and output voltage regulation (OVR) control loop are completely decoupled. First, the input-parallel output-parallel and input-parallel output series systems of modular DAB converters are modeled based on the small-signal modelling of a DAB module. In general, coupling effects between the ICS and OVR control loops exist when the input currents and output voltage are employed as control variables. To eliminate this undesirable effect, the input current errors of DAB converters are introduced as new control variables. In this way, independent single-input single-output systems are obtained. Consequently, a uniform power distribution among all of the DAB modules is achieved in the transient state as well as the steady state, even in the case of parameter mismatch. The feasibility of the proposed control scheme has been verified by simulation and experimental results.
Keywords
Decoupling control method; Dual active bridge (DAB) converter; Input current sharing; Modular power converters; Power conversion;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Luo, S., Batarseh, I.: A review of distributed power systems part I: DC distributed power system. IEEE Aerosp. Electron. Syst. Mag. 20(8), 5-16 (2005)   DOI
2 Ayyanar, R., Giri, R., Mohan, N.: Active input-voltage and load-current sharing in input-series and output-parallel connected modular dc-dc converters using dynamic input-voltage reference scheme. IEEE Trans. Power Electron. 19(6), 1462-1473 (2004)   DOI
3 Huang, Y., Tse, C.K.: Circuit theoretic classification of parallel connected dc-dc converters. IEEE Trans Circuits Syst. I Regul. Pap. 54(5), 1099-1108 (2007)   DOI
4 Lee, S.-M., Jeung, Y.-C., Lee, D.-C.: Voltage balancing control of IPOS modular dual active bridge DC/DC converters based on hierarchical sliding mode control. IEEE Access 7, 9989-9997 (2019)   DOI
5 Ma, D., Chen, W., Ruan, X.: A review of voltage/current sharing techniques for series-parallel-connected modular power conversion systems. IEEE Trans. Power Electron. 35(11), 12383-12400 (2020)   DOI
6 Siri, K., Truong, C.: Performance limitations of random current-sharing parallel-connected converter systems & rheir solution. In: Proc. Annual Applied Power Electronics Conference and Exposition, pp. 860-866 (1998)
7 Tabisz, W.A., Jovanovic, M.M., Lee, F.C.: Present and future of distributed power systems. In: Proc. Annual Applied Power Electronics Conference and Exposition, pp. 11-18 (1992)
8 Luo, S., Ye, Z., Lin, R.L., Lee, F.C.: A classification and evaluation of paralleling methods for power supply modules. In: Proc. IEEE Annual Power Electronics Specialists Conference, vol. 2, pp. 901-908 (1999)
9 Kim, J.-W., Choi, H.-S., Cho, B.-H.: A novel droop method for converter parallel operation. IEEE Trans. Power Electron. 17(1), 25-32 (2002)
10 Chen, W., Ruan, X., Yan, H., Tse, C.K.: DC/DC conversion systems consisting of multiple converter modules: stability, control, and experimental verifications. IEEE Trans. Power Electron. 24(6), 1463-1474 (2009)   DOI
11 Jung, C.-W.: Power sharing control of modular dc-dc converter systems based on dual active bridges. M.S. thesis, Yeungnam University, Republic of Korea (2020)
12 Jang, Y., Jovanovic, M., Li, S.-H., Yang, C.-C.: Power supply having converters with serially connected inputs and parallel connected outputs. US Patent US-9006930 (2015)
13 Qu, L., Zhang, D., Bao, Z.: Output current-differential control scheme for input-series-output-parallel-connected modular DC-DC converters. IEEE Trans. Power Electron. 32(7), 5699-5711 (2017)   DOI
14 Chen, X., Xu, G., Han, H., Sun, Y., Liu, Y., Su, M.: Modulated coupled inductor for input-serial-output-parallel dual-active-bridge converter. IEEE Trans. Ind. Electron. (2021). https://doi.org/10.1109/TIE.2021.3088364   DOI
15 Guan, Y., Xie, Y., Wang, Y., Liang, Y., Wang, X.: An active damping strategy for input impedance of bidirectional dual active bridge DC-DC converter: modeling, shaping, design, and experiment. IEEE Trans. Ind. Electron. 68(2), 1263-1274 (2021)   DOI
16 Al-Ismail, F.S.: DC microgrid planning, operation, and control: a comprehensive review. IEEE Access 9, 36154-36172 (2021)   DOI
17 Rodriguez, A., Vazquez, A., Lamar, D.G., Hernando, M.M., Sebastian, J.: Different purpose design strategies and techniques to improve the performance of a dual active bridge with phase-shift control. IEEE Trans. Power Electron. 30(2), 790-804 (2015)   DOI
18 Liu, J., Li, C., Zheng, Z., Wang, K., Li, Y.: Current discrepancy mitigation of input-parallel output-parallel dual-active-bridge converters using coupled inductors. IEEE Trans. Ind. Electron. 68(9), 8182-8192 (2021)   DOI
19 Hou, N., Li, Y.: Communication-free power management strategy for the multiple DAB-based energy storage system in islanded DC microgrid. IEEE Trans. Power Electron. 36(4), 4828-4838 (2021)   DOI
20 Huang, Y., Tse, C.K., Ruan, X.: General control considerations for input-series connected dc/dc converters. IEEE Trans. Circuits Syst. I 56(6), 1286-1295 (2009)   DOI
21 Shao, S., Chen, H., Wu, X., Zhang, J., Sheng, K.: Circulating current and ZVS-on of a dual active bridge dc-dc converter: a review. IEEE Access 7, 50561-50572 (2019)   DOI
22 Zumel, P., et al.: Modular dual-active bridge converter architecture. IEEE Trans. Ind. Appl. 52(3), 2444-2455 (2016)   DOI
23 Han, Y., Ning, X., Yang, P., Xu, L.: Review of power sharing, voltage restoration and stabilization techniques in hierarchical controlled DC microgrids. IEEE Access 7, 149202-149223 (2019)   DOI
24 Jung, C.-W., Lee, D.-C.: Decoupling control of input-paralleled system with dual active bridge converters. In: Proc. - Int. Symp. Electr. Electron. Eng., pp. 226-231 (2019)
25 Jeung, Y.-C., Lee, D.-C.: Voltage and current regulations of bidirectional isolated dual-active-bridge DC-DC converters based on a double-integral sliding mode control. IEEE Trans. Power Electron. 34(7), 6937-6946 (2019)   DOI
26 Ruan, X., Chen, W., Cheng, L., Tse, C.K., Yan, H., Zhang, T.: Control strategy for input-series-output-parallel converter. IEEE Trans. Ind. Electron. 56(4), 1174-1185 (2009)   DOI
27 Song-Manguelle J., et al.: A modular stacked dc transmission and distribution system for long distance subsea applications. In: Proc. IEEE Energy Conversion Congress and Exposition, pp. 4437-4444 (2012)
28 Kim, J.-W., You, J.-S., Cho, B.-H.: Modeling, control, and design of input-series-output-parallel-connected converter for high-speed-train power system. IEEE Trans. Ind. Electron. 48(3), 536-544 (2001)   DOI
29 Siri, K., Willhof, M., Conner, K.: Uniform voltage distribution control for series connected dc-dc converters. IEEE Trans. Power Electron. 22(4), 1269-1279 (2007)   DOI