Browse > Article
http://dx.doi.org/10.1007/s43236-021-00297-7

Lifetime and reliability improvements in modular multilevel converters using controlled circulating current  

Kadandani, Nasiru B. (School of Engineering, Newcastle University)
Dahidah, Mohamed (School of Engineering, Newcastle University)
Ethni, Salaheddine (School of Engineering, Newcastle University)
Muhammad, Musbahu (School of Computing, Engineering and Digital Technologies, Teesside University)
Publication Information
Journal of Power Electronics / v.21, no.10, 2021 , pp. 1611-1620 More about this Journal
Abstract
Circulating current has been an inherent feature of modular multilevel converters (MMC), which results in second-order harmonics on the arms currents. If not properly controlled, the circulating current can affect the lifetime and reliability of a converter by increasing the current loading, loss distribution, and junction temperature of its semiconductor devices. This paper proposes controlled circulating current injection as a means of improving the lifetime and reliability of an MMC. The proposed method involves modifying the reference modulating signals of the converter arms to include the controlled differential voltage as an offset. The junction temperature of the semiconductor devices obtained from an electro-thermal simulation is processed to deduce the lifetime and reliability of the converter. The obtained results are benchmarked against a case where the control method is not incorporated. The incorporation of the proposed control method results in a 68.25% increase in the expected lifetime of the converter and a 3.06% increase on its reliability index. Experimental results of a scaled down laboratory prototype validate the effectiveness of the proposed control approach.
Keywords
Modular multilevel converter (MMC); Circulating current control (CCC); Reliability; Lifetime; Rainflow algorithm;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Bakhshizadeh, M.K., Ma, K., Loh, P.C., Blaabjerg, F.: Indirect thermal control for improved reliability of modular multilevel converter by utilizing circulating current. IEEE applied power electron. conf. and exp. Charlotte, NC, 2167-2173 (2015)
2 Wang, H., et al.: Transitioning to physics-of-failure as a reliability driver in power electronics. IEEE J. Emerg. Sel. Top. Power Electron. 2(1), 97-114 (2014)   DOI
3 Stephens, P.I., Fatemi, A., Stephens, R.R., Fuchs, H.O.: Metal fatigue in engineering, 2nd edn. Wiley, Hoboken (2000)
4 Richardeau, F., Pham, T.T.L.: Reliability calculation of multilevel converters: theory and applications. IEEE Trans. Ind. Electron. 60(10), 4225-4233 (2013)   DOI
5 Lesnicar, A., Marquardt, R.: A new modular voltage source inverter topology. In: Proc. of Eur. Conf. on Power Electron. Appl. Toulouse, France (2003)
6 Han, X., Sima, W., Yang, M., Li, L., Yuan, T., Si, Y.: Transient characteristics under fround and short-circuit faults in a ±500kV MMC_based HVDC system with hybrid DC circuit breakrs. IEEE Trans. Power Del. 33(3), 1378-1887 (2018)   DOI
7 Hao, Q., Li, Z., Gao, F., Zhang, J.: Reduced-order small-signal models of modular multilevel converter and MMC-based HVdc grid. IEEE Trans. Ind. Electron. 66(3), 2257-2268 (2019)   DOI
8 Zhu, R., Lin, N., Dinavashi, V., Liang, G.: An accurate and fast method for conducted EMI modeling and simulation of MMC-based HVdc converter station. IEEE Trans. Power Electron. 35(5), 4689-4702 (2020)   DOI
9 Isik, S., Anurag, A., Bhattacharya, S.: Modeling of MMC based FACTS device as a replacement of UPFC for power flow and oscillation damping control. 46th Annual Conf. of IEEE Ind. Electrons. Society, pp. 4188-4193 (2020)
10 Andresen, M., Ma, K., Carne, G.D., Buticchi, G., Blaabjerg, F., Liserre, M.: Thermal stress analysis of medium-voltage converters for smart transformers. IEEE Trans. Power Electron. 32(6), 4753-4765 (2017)   DOI
11 Nielsen, R. O., Due, J., Munk-Nielsen, S.: Innovative measuring system for wear-out indication of high power IGBT modules. IEEE energy conv. cong. and expo, pp. 1785-1790 (2011)
12 Perez-Basante, A., et al.: Circulating current control for modular multilevel converters with (N+1) selective harmonic elimination-PWM. IEEE Trans. Power Electron. 35(8), 8712-8725 (2020)   DOI
13 Zhang, H., Wickramasinghe, H.R., Jing, L., Li, J., Pou, J., Konstantinou, G.: Circulating current control scheme of modular multilevel converters supplying passive networks under unbalanced load conditions. Electr. Power Syst. Res. 171, 36-46 (2019)   DOI
14 Nieslony, A.: Determination of fragments of multiaxial service loading strongly influencing the fatigue of machine components. Mech. Syst. Signal Process. 23, 712-2721 (2009)   DOI
15 Hahn, F., Andresen, M., Buticchi, G., Liserre, M.: Thermal analysis and balancing for modular multilevel converters in HVDC applications. IEEE Trans. Power Electron. 33(3), 1985-1996 (2018)   DOI
16 Held, M., Jacob, P., Nicoletti, G., Scacco, P., Poech, M.: Fast power cycling test of IGBT modules in traction application. 2nd int. conf. on power electron. and drive syst, Singapore, 1, 425-430 (1997)
17 Huang, H., Mawby, P.A.: A lifetime estimation technique for voltage source inverters. IEEE Trans. Power Electron. 28(8), 4113-4119 (2013)   DOI
18 GopiReddy, L.R., Tolbert, L.M., Ozpineci, B., Pinto, J.O.P.: Rainflow algorithm-based lifetime estimation of power semiconductors in utility applications. IEEE Trans. Ind. Appl. 51(4), 3368-3375 (2015)   DOI
19 Bryant, A.T., Mawby, P.A., Palmer, P.R., Santi, E., Hudgins, J.L.: Exploration of device reliability using compact device models and fast electrothermal simulation. IEEE Trans. Ind. Appl. 44(3), 894-903 (2008)   DOI
20 Yang, S., Bryant, A., Mawby, P., Xiang, D., Ran, L., Tavner, P.: An Industry-based survey of reliability in power electronic converters. IEEE Trans. Ind. Appl. 47(3), 1441-1451 (2011)   DOI
21 Choi, U., Blaabjerg, F., Lee, K.: Study and handling methods of power IGBT module failures in power electronic converter systems. IEEE Trans. Power Electron. 30(5), 2517-2533 (2015)   DOI
22 Li, Y., et al.: PLL synchronization stability analysis of MMC-connected wind farms under high-impedance AC faults. IEEE Trans. Power Syst. 36(3), 2251-2261 (2021)   DOI
23 Li, H. et al: Hardware design of a 1.7 kV SiC MOSFET based MMC for medium voltage motor drives. Appl. Power Electrons. Conf. Expo, pp. 1649-1655 (2018)
24 Tu, Q., Xu, Z., Xu, L.: Reduced switching-frequency modulation and circulating current suppression for modular multilevel converters. IEEE Trans. Power Del. 6(3), 2009-2017 (2011)
25 Infineon: IGBT Module FF75R12RT4 Data Sheet (2013)
26 Goncalves, J., Rogers, D.J., Liang, J.: Submodule temperature regulation and balancing in modular multilevel converters. IEEE Trans. Ind. Electron. 65(9), 7085-7094 (2018)   DOI
27 Hagiwara, M., Akagi, H.: PWM control and experiment of modular multilevel converters. Power Electron. Spec. Conf, pp. 154-161 (2008)
28 Musallam, M., Johnson, C.M.: An efficient implementation of the rainflow counting algorithm for life consumption estimation. IEEE Trans. Reliab. 61(4), 978-986 (2012)   DOI
29 Jones, D.R.H., Ashby, M.F.: Engineering materials 1-an introduction to properties, applications and design, 3rd edn, Oxford (2015)
30 Graditi G., Adinolfi, G.: Energy performances and reliability evaluation of an optimized DMPPT boost converter. Int. Conf. on Clean Electr. Power, Ischia, Italy, 69-72 (2011)
31 Khanal, S., Disfani, V.: 'Modular multilevel converter design for grid integration of solar photovoltaic systems. IEEE power and energy society general meeting, pp. 1-5 (2020)
32 Kadandani, N.B., Dahidah, M., Ethni, S.: Design and development of modular multilevel converter for solid state transformer application. Bayero J. Eng. Technol. 16(1), 31-41 (2021)
33 Chen, X., Liu, J., Song, S., Ouyang, S.: Circulating harmonic currents suppression of level-increased NLM based modular multilevel converter with deadbeat control. IEEE Trans. Power Electron. 35(11), 11418-11429 (2020)   DOI
34 Xu, X., Zhao, P., Zhao, C.: Reliability analysis and redundancy configuration of MMC with hybrid submodule topologies. IEEE Trans. Power Electron. 31(4), 2720-2729 (2016)   DOI
35 Hirschmann, D., Tissen, D., Schroder, S., Doncker, R.W.D.: Reliability prediction for inverters in hybrid electrical vehicles. IEEE Trans. Power Electron. 22(6), 2511-2517 (2007)   DOI
36 Perpina, X., Jorda, X., Vellvehi, M., Rebollo, J., Mermet-Guyennet, M.: Long-term reliability of railway power inverters cooled by heat-pipe based systems. IEEE Trans. Ind. Electron. 58(7), 2662-2672 (2011)   DOI
37 Tanta, M., et al.: Deadbeat predictive current control for circulating currents reduction in a modular multilevel converter based rail power conditioner. Appl. Sci. 10, 1-22 (2020)
38 Bannantine, J.A., Comer, J.J., Handrock, J.L.: Fundamentals of Metal Fatigue Analysis. Prentice-Hall, Englewood Cliffs (1990)
39 Toshiba: IGBT GT20J341 Datashet (2012)
40 Miner, M.A.: Cumulative damage in fatigue. J. Appl. Mech. 12, A159-A164 (1945)   DOI