Browse > Article
http://dx.doi.org/10.1007/s43236-021-00293-x

Simplified damping analysis and suppression method for low-frequency oscillation introduced by virtual synchronous generator  

Ruan, Jinhao (Department of Electrical Engineering, Southwest Jiaotong University)
Shi, Zhanghai (Department of Electrical Engineering, Southwest Jiaotong University)
Yu, Maochi (Department of Electrical Engineering, Southwest Jiaotong University)
Wang, Shisong (Department of Electrical Engineering, Southwest Jiaotong University)
Publication Information
Journal of Power Electronics / v.21, no.10, 2021 , pp. 1600-1610 More about this Journal
Abstract
Similar to synchronous generators (SGs), the phenomenon of low-frequency oscillation (LFO) may occur when virtual synchronous generator (VSG) is involved in power grid, thereby negatively affecting the stability of the power system. In this paper, the oscillation mechanism of the power system composed of a VSG and infinite grid (single-VSG infinite-bus system) is analyzed, the conditions for the occurrence of LFO are unveiled, and a simplified damping selection method to suppress the LFO is provided, considering the adjustable damping of VSG. First, a small-signal model of the single-VSG infinite-bus system is established. The order of this system model is reduced using the damping torque analysis. Then, the mechanism of LFO under various dampings is analyzed. On this basis, a reasonable selection method of damping is drawn. The range of damping, where LFO converges, can be determined and the appropriate damping coefficient can be selected using this method. Finally, the effectiveness of the proposed method is verified by simulations and experiments.
Keywords
VSG; Grid-connected inverter; LFO; Distributed generation; Damping;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Wu, F.: Analysis and control of low frequency oscillation in power systems. Ph.D. Thesis. ZJU Hangzhou (2007)
2 Chen, Z., Du, W., Wang, H., Gao, S.: Power system low-frequency oscillations suppression with energy storage system based on DTA. Autom. Electric Power Syst. 33(12), 8-11 (2009)   DOI
3 Wen, B., Dong, D., Boroyevich, D., Burgos, R., Mattavelli, P., Shen, Z.: Impedance-based analysis of grid-synchronization stability for three-phase paralleled converters. IEEE Trans. Power Electron. ,31(1), 26-38 (2016)   DOI
4 Liserre, M., Teodorescu, R., Blaabjerg, F.: Stability of photovoltaic and wind turbine grid-connected inverters for a large set of grid impedance values. IEEE Trans. Power Electron. 21(1), 263-272 (2006)   DOI
5 D'Arco, S., Suul, J. A.: Virtual synchronous machines-classification of implementations and analysis of equivalence to droop controllers for microgrids. 2013 IEEE Grenoble Conference, 1-7 (2013). https://doi.org/10.1109/PTC.2013.6652456   DOI
6 Du, W., Bi, J., Wang, X., Wang, H.: Review of studies on low frequency power oscillations of power systems. South. Power Syst. Technol. 10(5), 59-67 (2016)
7 Schleif, F.R., White, J.H.: Damping for the northwest - southwest tieline oscillations - an analog study. IEEE Trans. Power Appar. Syst. 85(12), 1239-1247 (1966)   DOI
8 Mohamed, Y.A.I., El-Saadany, E.F.: Adaptive decentralized droop controller to preserve power sharing stability of paralleled inverters in distributed generation microgrids. IEEE Trans. Power Electron. 23(6), 2806-2816 (2008)   DOI
9 Sun, J.: Impedance-based stability criterion for grid-connected inverters. IEEE Trans. Power Electron. 26(11), 3075-3078 (2011)   DOI
10 Wei, J., Ye, S., Zhang, Y., Zhang, K., Zhang, C., Hu, W.: An Adaptive Control Strategy for Virtual Synchronous Generator to Damp Power System Low Frequency Oscillation. 2020 Asia Energy and Electrical Engineering Symposium (AEEES), 96-100 (2020). https://doi.org/10.1109/AEEES48850.2020.9121470   DOI
11 Xiong, X., Wu, C., Hu, B., Pan, D., Blaabjerg, F.: Transient damping method for improving the synchronization stability of virtual synchronous generators. IEEE Trans. Power Electron. 36(7), 7820-7831 (2021)   DOI
12 Alipoor, J., Miura, Y., Ise, T.: Power system stabilization using virtual synchronous generator with alternating moment of inertia. IEEE J. Emerg. Sel. Topics Power Electron. 3(2), 451-458 (2015)   DOI
13 Lv, Z., Sheng, W., Zhong, Q., Liu, H., Zeng, Z., Yang, L., Liu, L.: Virtual synchronous generator and its applications in micro-grid. Proc. CSEE 34(16), 2591-2603 (2014)
14 Song, Z., Zhang, J., Tang, F., Wu, M., Lv, Z., Sun L., Zhao, T.: Small Signal Modeling and Parameter Design of Virtual Synchronous Generator to Weak Grid. 2018 13th IEEE Conference on Industrial Electronics and Applications (ICIEA), 2618-2624 (2018). https://doi.org/10.1109/ICIEA.2018.8398153   DOI
15 Zheng, T., Chen, L., Wang, R., Li, C., Mei, S.: Adaptive Damping Control Strategy of Virtual Synchronous Generator for Frequency Oscillation Suppression. 12th IET International Conference on AC and DC Power Transmission (ACDC 2016), 1-5 (2016). https://doi.org/10.1049/cp.2016.0458   DOI
16 Huang, L., Xin, H., Wang, Z.: Damping low-frequency oscillations through VSC-HVdc stations operated as virtual synchronous machines. IEEE Trans. Power Electron. 34(6), 5803-5818 (2019)   DOI
17 Li, X., Chen, G.: Improved Adaptive Inertia Control of VSG for Low Frequency Oscillation Suppression. 2018 IEEE International Power Electronics and Application Conference and Exposition (PEAC), 1-5 (2018). https://doi.org/10.1109/PEAC.2018.8590366   DOI
18 Alipoor, J., Miura, Y. and Ise, T.: Distributed Generation Grid Integration Using Virtual Synchronous Generator with Adoptive Virtual Inertia. 2013 IEEE Energy Conversion Congress and Exposition, 4546-4552 (2013). https://doi.org/10.1109/AEEES48850.2020.9121470   DOI
19 Shi, K., Yu, W., Sun, Y., Xv, P., Feng, G.: Frequency-coupled impedance modeling of virtual synchronous generators. IEEE Trans. Power Syst. (2021). https://doi.org/10.1109/TPWRS.2021.3050568   DOI
20 Liu, C., Sun, T., Cai, G., Ge, W., Ge, Y., Yan, H., Liu, Y.: Third-order synchronous machine model based active support control of battery storage power plant and its contribution analysis for primary frequency response. Proc. CSEE. 40(15), 4854-4865 (2020)
21 Chen, M., Xiao, X., Yuan, C., Tao, S.: The control strategy of virtual synchronous generator based on three-order model. Modern Electric Power 34(5), 57-63 (2017)
22 Du, W., Wang, H., Xiao, L., Dunn, R.: Phillips-Heffron Model of Power Systems Installed with Energy Storage Systems (ESS). 2009 44th International Universities Power Engineering Conference (UPEC), 1-5 (2009)
23 Zhong, Q., Nguyen, P., Ma, Z., Sheng, W.: Self-synchronized synchronverters: inverters without a dedicated synchronization unit. IEEE Trans. Power Electron. 29(2), 617-630 (2014)   DOI
24 Yu, H., Su, J., Xu, H., Shi, Y.: Equivalent and identification of virtual inertia and damping of grid-connected inverter. Proc. CSEE. 39(20), 6034-6043 (2019)
25 Shi, M., Chen, X., Zhou, J., Chen, Y., Wen, J., He, H.: Frequency restoration and oscillation damping of distributed VSGs in microgrid with low bandwidth communication. IEEE Trans. Smart Grid. 12(2), 1011-1021 (2021)
26 Hirase, Y., Noro, O., Sugimoto, K., Sakimoto, K., Shindo, Y., Ise, T.: Effects of suppressing frequency fluctuations by parallel operation of virtual synchronous generator in microgrids. 2015 IEEE Energy Conversion Congress and Exposition (ECCE), 3694-3701 (2015). https://doi.org/10.1109/ECCE.2015.7310182   DOI
27 Liu, H., Sun, D., Zhao, F., Tian, Y., Song, P., Cheng, X.: The influence of virtual synchronous generators on low frequency oscillations. CSEE J. Power Energy Syst. (2020). https://doi.org/10.17775/CSEEJPES.2020.01700   DOI
28 Qu, S., Wang, Z.: Cooperative control strategy of virtual synchronous generator based on optimal damping ratio. IEEE Access 32, 709-719 (2020)
29 Beck, H., Hesse, R.: Virtual Synchronous Machine. 2007 9th International Conference on Electrical Power Quality and Utilization, 1-6 (2007). https://doi.org/10.1109/EPQU.2007.4424220   DOI
30 Zhong, Q., Weiss, G.: Synchronverters: inverters that mimic synchronous generators. IEEE Trans. Ind. Electron. 58(4), 1259-1267 (2011)   DOI
31 Qu, Z., Peng, J.C.-H., Yang, H., Srinivasan, D.: Modeling and analysis of inner controls effects on damping and synchronizing torque components in vsg-controlled converter. IEEE Trans. Energy Convers. 36(1), 488-499 (2021)   DOI
32 Demello, F.P., Concordia, C.: Concepts of synchronous machine stability as affected by excitation control. IEEE Trans. Power Apparatus Syst. 88(4), 316-329 (1969)   DOI
33 Zhang, H., Zhang, R., Sun, K., Feng, W.: Performance improvement strategy for parallel-operated virtual synchronous generators in microgrids. J. Power Electron. ,19(2), 580-590 (2019)   DOI
34 Ding, X., Lan, T., Dong, H.: Control strategy and stability analysis of virtual synchronous generators combined with photovoltaic dynamic characteristics. J. Power Electron. 19(5), 1270-1277 (2019)   DOI
35 Xi, J., Geng, H., Zou, X.: Decoupling scheme for virtual synchronous generator controlled wind farms participating in inertial response. J Modern Power Syst. Clean Energy 9(2), 347-355 (2021)   DOI
36 Wu, H., Ruan, X., Yang, D., Chen, X., Zhao, W., Lv, Z., Zhong, Q.: Small-signal modeling and parameters design for virtual synchronous generators. IEEE Trans. Ind. Electron. 63(7), 4292-4303 (2016)   DOI
37 Li, X., Hu, Y., Shao, Y., Chen, G.: Mechanism analysis and suppression strategies of power oscillation for virtual synchronous generator. IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society, 4955-4960 (2017). https://doi.org/10.1109/IECON.2017.8216855   DOI
38 Blaabjerg, F., Teodorescu, R., Liserre, M., Timbus, A.V.: Overview of control and grid synchronization for distributed power generation systems. IEEE Trans. Ind. Electron. 53(5), 1398-1409 (2006)   DOI
39 Yang, X., Su, J., Ming, D., Li, J., Yan, D.: Control Strategy for Virtual Synchronous Generator in Microgrid. 2011 4th International Conference on Electric Utility Deregulation and Restructuring and Power Technologies (DRPT), 1633-1637 (2011)
40 Du, W., Jiang, Q., Chen, J.: Frequency control strategy of distributed generations based on virtual inertia in a microgrid. Autom. Electric Power Syst. 35(23), 26-36 (2011)