Browse > Article
http://dx.doi.org/10.1007/s43236-021-00300-1

Electro-thermal model for lithium-ion battery simulations  

Cai, Yibin (Key Laboratory of Smart Grid of Education Ministry, Tianjin University)
Che, Yanbo (Key Laboratory of Smart Grid of Education Ministry, Tianjin University)
Li, Hongfeng (Key Laboratory of Smart Grid of Education Ministry, Tianjin University)
Jiang, Mingda (Key Laboratory of Smart Grid of Education Ministry, Tianjin University)
Qin, Peijun (Sichuan Shuxing Youchuang Safety Technology Co., Ltd)
Publication Information
Journal of Power Electronics / v.21, no.10, 2021 , pp. 1530-1541 More about this Journal
Abstract
With the extensive application of lithium batteries and the continuous improvements in battery management systems and other related technologies, the requirements for fast and accurate modeling of lithium batteries are gradually increasing. Temperature plays a vital role in the dynamics and transmission of electrochemical systems. The thermal effect must be considered in battery models. In this paper, a simulation model of a lithium battery with thermal characteristics is established. This thermal model is coupled with a temperature-dependent 2-RC equivalent circuit model to form an electro-thermal model for lithium-ion batteries. The hybrid pulse power characterization test is used to estimate the equivalent circuit parameters. Finally, under NEDC and DST conditions, battery voltage and temperature estimation results of the electro-thermal model are analyzed to verify the correctness and accuracy of the model. The voltage error is within - 0.16~0.20 V under the NEDC condition. Moreover, under the DST condition, the maximum relative error in the electro-thermal model is within 5%.
Keywords
Lithium battery; Equivalent circuit model; Thermal model; Parameter identification;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Su, W.C., Rahimi-Eichi, H., Zeng, W.T., Chow, M.Y.: A survey on the electrification of transportation in a smart grid environment. IEEE Trans. Ind. Inform. 8(1), 1-10 (2012)   DOI
2 Wang L.: Research on SOC estimation and power prediction method of lithium battery based on H∞ filter [D]. Tianjin University (2015)
3 Amini, M.H., Karabasoglu, O.: Optimal operation of interdependent power systems and electrified transportation networks. Energies 11(1), 196-220 (2018)   DOI
4 Liu, W.X., Niu, S.Y., Xu, H.T.: Optimal planning of battery energy storage considering reliability benefit and operation strategy in active distribution system[J]. J. Mod. Power Syst. Clean Energy 5(2), 177-186 (2017)   DOI
5 Rahimi-eichi, H., Ojha, U., Baronti, F., et al.: Battery management system: an overview of its application in the smart grid and electric vehicles[J]. IEEE Ind. Electron. Mag. 7(2), 4-16 (2013)   DOI
6 Wei, Z.N., Yuan, K.K., Cheng, L.X., et al.: Lithium battery parameter identification based on multiple innovation least squares algorithm[J]. Autom. Electric Power Syst. 43(15), 139-145 (2019)
7 Waag, W., Kabitz, S., Sauer, D.U.: Experimental investigation of the lithium-ion battery impedance characteristic at various conditions and aging states and its influence on the application. Apply Energy. 102, 885-897 (2013)   DOI
8 Wang, Y., Gao, Q., Wang, G.H., Lu, P.Y., Zhao, M.D., Bao, W.D.: A review on research status and key technologies of battery thermal management and its enhanced safety. Int. J. Energy Res. 42(7), 4008-4033 (2018)   DOI
9 Seaman, A., Dao, T.S., McPhee, J.: A survey of mathematics-based equivalent-circuit and electrochemical battery models for hybrid and electric vehicle simulation [J]. J. Power Sour. 256, 410-423 (2014)   DOI
10 Rao, Z., Wang, S.: A review of power battery thermal energy management [J]. Renew. Sustain. Energy Rev. 15(8), 4554-4571 (2011)   DOI
11 Wang, Q.Q., Wang, J., Zhao, P.J., et al.: Correlation between the model accuracy and model based SOC estimation[J]. Electrochim. Acta 228, 146-159 (2017)   DOI
12 Liu, X.T., Sun, Z.C., He, Y., et al.: SOC estimation method based on lithium-ion cell model considering environmental factors[J]. J. Southeast Univ. (Natl. Sci. Ed). 47(2), 306-312 (2017)
13 Bian, X.L., Wei, Z.B., He, J.T., et al.: A novel model-based voltage construction method for robust state-of-health estimation of lithium-ion batteries[J]. IEEE Trans. Ind. Electron. (2021). https://doi.org/10.1109/TIE.2020.3044779   DOI
14 Zhang, C., Li, K., Deng, J.: Real-time estimation of battery internal temperature based on a simplified thermoelectric model[J]. J. Power Sour. 302, 146-154 (2016)   DOI
15 Chen, Y., Ma, Y., Chen, H.: State of charge and state of health estimation for lithium-ion battery through dual sliding mode observer based on AMESim-Simulink co-simulation[J]. J. Renew. Sustain. Energy. 10(3), 034103 (2018)   DOI
16 Li, X.Y., Xu, J., Hu, Z.H., et al.: The health parameter estimation method for LiFePO4 battery echelon use[J]. Trans. China Electrotech. SOC. 33(1), 9-16 (2018)
17 Bian, X.L., Wei, Z.B., He, J.T., et al.: A two-step parameter optimization method for low-order model-based state-of-charge estimation[J]. IEEE Trans. Transp. Electrificat. 7(2), 399-409 (2021)   DOI
18 Bian, X.L., Liu, L.C., Yan, J.Y.: A model for state-of-health estimation of lithium ion batteries based on charging profiles[J]. Energy 177, 57-65 (2021)   DOI
19 Liu, W., Wu, H.S., He, Z.C., et al.: A multistage current charging method for li-ion battery considering balance of internal consumption and charging speed[J]. Trans. China Electrotech. SOC.. 32(9), 112-120 (2017)
20 He, H.W., Xiong, R., Fa, J.X.: Evaluation of lithium-ion battery equivalent circuit models for state of charge estimation by an experimental approach[J]. Energies 4(4), 582-598 (2011)   DOI
21 Jin, L.Q., Sun, Z.X., Liu, Z.R., et al.: Simulation study on stale of charge estimation of lithium-ion battery at different temperatures[J]. Automot. Eng. 41(5), 114-122 (2019)
22 Zheng, Y., Dong, Z.Y., Huang, S.L., et al.: Optimal integration of mobile battery energy storage in distribution system with renewable[J]. J. Mod. Power Syst. Clean Energy. 3(4), 589-596 (2015)   DOI
23 Hua, Y., Xu, M.: SOC estimation of lithium-ion batteries by model-based filtering method under different thermal conditions[J]. Chin. J. Power Sour. 40(4), 814-817 (2016)
24 Chin, C., Gao, Z.C., Chiew, J.: Nonlinear temperature-dependent state model of cylindrical LiFePO4 battery for open-circuit voltage, terminal voltage and state-of-charge estimation with extended Kalman filter[J]. Energies 11(9), 2467 (2018)   DOI
25 Chen, Z.Y., Zhang, B., Xiong, R., et al.: Electro-thermal coupling model of lithium-ion batteries under external short circuit[J]. Appl. Energy 293, 116910 (2021)   DOI
26 Ceraolo, M.: New dynamical models of lead-acid batteries. IEEE Trans. Power Syst. 15(4), 1184-1190 (2000)   DOI
27 Barsali, S., Ceraolo, M.: Dynamical models of lead-acid batteries: implementation issues. IEEE Trans. Energy Convers. 17(1), 16-23 (2002)   DOI
28 Unterrieder C., Lunglmayr M., Marsili S., et al. Battery state-of-charge estimation prototype using EMF voltage prediction[J]. In: Proceedings-IEEE International Symposium on Circuits and Systems. 622-625 (2014).
29 Gomadam, P.M., White, R.E., Weidner, J.W.: Modeling heat conduction in spiral geometries. J. Electrochem. SOC. 150(10), A1339-A1345 (2003)   DOI
30 Wang, S.L., Fernandez, C., Yu, C.M., et al.: A novel charged state prediction method of the lithium ion battery packs based on the composite equivalent modeling and improved splice Kalman filtering algorithm[J]. J. Power Sour. 471, 228450 (2020)   DOI
31 Pesaran A., Keyser M.: An approach for designing thermal management systems for electric and hybrid vehicle battery packs [C]. In: The Fourth Vehicle Thermal Management Systems Conference and Exhibition London. 1-18 (1999).