Browse > Article
http://dx.doi.org/10.1007/s43236-021-00290-0

Comprehensive modeling of SVC-TCSC-HVDC power flow in terms of simultaneous application in power systems  

Javadian, Abdolmajid (Department of Electrical Engineering, Islamic Azad University)
Zadehbagheri, Mahmoud (Department of Electrical Engineering, Islamic Azad University)
Kiani, Mohammad Javad (Department of Electrical Engineering, Islamic Azad University)
Nejatian, Samad (Department of Electrical Engineering, Islamic Azad University)
Publication Information
Journal of Power Electronics / v.21, no.10, 2021 , pp. 1493-1507 More about this Journal
Abstract
Due to the pattern of growth for electricity consumption, there is a need for developing power networks and transmission lines. The power transmission capacity of lines is limited due to a host of factors. Thus, these lines need series and parallel compensations to reduce losses, increase efficiency, and promote system security. In this paper, flexible alternating current transmission system (FACTS) devices including static VAR compensators (SVC) as parallel compensators, thyristor-controlled series compensation (TCSC) as a series compensator, and high-voltage direct current (HVDC) bonding are modeled. In addition, comprehensive modeling of the simultaneous application of these three devices for load flow is performed, and the effects of these types of compensations are compared. The obtained comprehensive model was implemented on MATLAB software using the Newton-Raphson method on two 9-bus WSCC and 5-bus test system. In this case, the calculation speed and convergence were reduced when compared to applying devices individually due to the increase in equations and the addition of new terms to the load flow equations. Furthermore, more losses were observed in this model, which can probably be improved using an optimal power flow and optimal placement of the devices in the network.
Keywords
Flexible AC transmission systems; HVDC transmission; Load flow; Static VAR compensators; Thyristor-controlled series compensation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Kundur, P, Sh, Complier., J. Balu, N., G. Lauby, M. (eds.): Power system stability and control. Elecctrical Power Research Institute, McGraw-Hill Professional, 3412Hillview Avenue Palo Alto, California (1994)
2 Raza, A., Shakeel, A., Ul Hassan, H.T., Jamil, M., Gillani, S.O.: Economic analysis for HVDC transmission system in Pakistan. Int. J. Control Autom. 10(11), 29-38 (2017). https://doi.org/10.14257/ijca.2017.10.11.03. https://www.researchgate.net/publication321671139   DOI
3 Yousuf, S.M., Subramaniyan, M.S.: HVDC and FACTS in power system. Int J Sci Res (IJSR) 2(12),(ISSN: 2317-7064) (2013)
4 Rabea1, F., Kamel, S., Jurado, F., Abdel-Rahim, O.: Implementation of a simplified SVC model into Newton-Raphson load flow algorit-hm. In: International conference innovative Trends in Computer Engineering (ITCE). Aswan University (2018). https://doi.org/10.1109/ITCE.2018.8316653   DOI
5 Fuerte-Esquivel, C.R., Acha, E.: A Newton-type algorithm for the control of power flow in electrical power networks. IEEE Trans Power Syst. 12(4), (1997). https://doi.org/10.1109/59.627844   DOI
6 Ayan, K., Kilic, U.: Optimal power flow of two-terminal HVDC systems using backtracking search algorithm. Electr. Power Energy Syst. 78, 326-335 (2017)   DOI
7 Acha, E., Fuerte-Esquivel, C.R., Perez, H.A., Camcho, C.A.: FACTS modelling and simulation in power networks. Wiley, New York (2004)
8 Saadat, H. (ed.): Power system analysis. Mcgraw-Hill College, Milwaukee, wisconsin (1998)
9 Kumari, N., Chandra Sekhar, C.H.K.: Power flow control using FACTS device in modern power system. In: IEEE International conference on circuits and systems (ICCS),Thiruvananthapuram, Kerala, India (2017). https://doi.org/10.1109/ICCS1.2017.8326024   DOI
10 Rudervall, R., Charpentier, J.P., Sharma, R.: High voltage direct current (HVDC) transmission systems technology review paper. Presented at Energy Week, Washington, D.C. (2000)
11 Eltamaly, A.M., Sayed, Y., Elghaffar, A. N. A : A survey: HVDC system operation and fault analysis. Annals Faculty Eng Hunedoara Int J Eng Tome XV, Fascicule 4, (2017). https://www.researchgate.net/publication/321304240
12 AboElHassan, M.A., Kamel, S., Ebeed, M.: Simple modeling of HVDC systems into Newton-Raphson load flow algorithm. In: IEEE 2016 Eighteenth International Middle East Power Systems Conference (MEPCON). Cairo, Egypt (2016). https://doi.org/10.1109/MEPCON.2016.7836991   DOI
13 Acha, E., Kazemtabrizi, B., Castro, L.M.: A new VSC-HVDC model for power flows using the newton-raphson method. IEEE Trans Power Syst 28(3), (2013). https://doi.org/10.1109/TPWRS.2012.2236109   DOI
14 Usman, A.M., Kutay, M., Ercan, T.: MATLAB/SIMULINK model for HVDC fault calculations. In: IEEE 2019 International Aegean Conference on Electrical Machines and Power Electronics (ACEMP)& 2019 International Conference on Optimization of Electrical and Electronic Equipment (OPTIM) - Istanbul, Turkey, (2019). https://doi.org/10.1109/ACEMPOPTIM44294.2019.9007154. https://www.researchgate.net/publication/335749004   DOI
15 Barnes, M., Hertem, D.V., Teeuwsen, S.P., Callavik, M.: HVDC systems in smart grids. IEEE (2017). https://doi.org/10.1109/JPROC.2017.2672879   DOI
16 Shankar Zope, S., Singh, R.P.: Newton-Raphson power flow models of SVC optimized by PSO. Int J Digital Appl Contemp Res (IJDACR) 5(2), (2016). https://www.ijdacr.com
17 Kilic, U., Ayan, K.: Optimal power flow solution of two-terminal HVDC systems using genetic algorithm. Elect Eng (Archiv fur Elektrotechnik) 69(1). Springer, Berlin (2014). https://doi.org/10.1007/s00202-013-0277-7   DOI
18 Shu, T., Lin, X., Peng, S., Du, X., Chen, H., Li, F., Tang, J., Li, W.: Probabilistic power flow analysis for hybrid HVAC and LCC-VSC HVDC system. IEEE Access (2019). https://doi.org/10.1109/ACCESS.2019.2942522   DOI
19 Ambriz-Perez, H., Acha, E., Fuerte-Esquivel, C.R.: High voltage direct current modelling in optimal power flow. Electric Power Energy Syst. 30, 157-168 (2008). https://doi.org/10.1016/j.ijepes.2007.06.010   DOI
20 Lashkar Ara, A., Kazemi, A., Nabavi Niaki, S.A.: Multiobjective optimal location of FACTS shunt-series controllers for power system operation planning. IEEE Transactions on Power Delivery. 27(2), (2012). https://doi.org/10.1109/tpwrd.2011.2176559   DOI
21 Chen, Q., Dong, X., Li, H., Jin, T., Yi, J., Tu, J.: A method of power flow calculation considering NEW FACTS and HVDC. J. Phys. ISPECE Conf. Ser. 1187, 022046 (2019). https://doi.org/10.1088/1742-6596/1187/2/022046   DOI
22 Khan, I., Mallick, M.A., Rafi, M., Mirza, M.S.: Optimal placement of FACTS controller scheme for enhancement of power system security in Indian scenario. J Elect Syst Infor Technol., 2(2), 161-171 (2015). https://doi.org/10.1016/j.jesit.2015.03.013. https://creativecommons.org/licenses/by-nc-nd/4.0/   DOI
23 Ambriz-Perez, H., Acha, E., Fuerte-Esquivel, C.R.: TCSC-firing angle model for optimal power flow solutions using Newton's method. J. Electr. Power Energy Syst. 28, 77-85 (2006). https://doi.org/10.1016/j.ijepes.2005.10.003   DOI
24 Patil, B., Karajgi, S.B.: Simultaneous placement of FACTS devices using cuckoo search algorithm. Int. J. Power Electron. Drive Syst. 11(3), 1344-1349 (2020)   DOI
25 Messalti, S., Belkhiat, S., Saadate, S.H., Flieller, D.: A new approach for load flow analysis of integrated AC-DC power systems using sequential modified Gauss-Seidel methods. Eur. Trans. Electr. Power 22, 421-432 (2012). https://doi.org/10.1002/etep.570   DOI
26 Hingorani, N.G., Gyugyi, L.: Concepts and technology of flexible AC transmission systems. Wiley, IEEE Press, New York (1999)
27 Asija, D., Choudekar, P., Soni, K.M., Sinha, S.K.: Power flow study and contingency status of WSCC 9 bus test system using MATLAB. In: International conference on recent developments in control, automation and power engineering (RDCAPE). Noida, India, (2015). https://doi.org/10.1109/RDCAPE.2015.7281420   DOI
28 Bhattacharyya, B., Raj, S.: Swarm intelligence based algorithms for reactive power planning with Flexible AC transmission system devices. Electr. Power Energy Syst. 78, 158-164 (2015). https://doi.org/10.1016/j.jesit.2015.11.086   DOI
29 Vinkovic, A., Mihalic, R.: Universal method for the modeling of the 2nd generation FACTS devices in Newton-Raphson power flow. Electr. Power Energy Syst. 33, 1631-1637 (2011)   DOI
30 Moamen, M.A.A., Prasad Padhy, N.: Newton-Raphson TCSC model for power flow solution of practical power networks. USA (21-25 July 2002). In: IEEE Power Engineering Society Summer Meeting (2002). https://doi.org/10.1109/pess.2002.1043640   DOI
31 Pali, B,S., Bhowmick, S., Kumar, N.: Newton-Raphson power flow models of static VAR compensator. In: EEE 2012 IEEE 5th India International Conference on Power Electronics (IICPE) - Delhi, India, (2012). https://www.researchgate.net/publication/261193085
32 Sreejith S., Simon SP., Selvan. MP : Comparative evaluation of modelling methods for TCSC in optimal power flow studies. In: IEEE 2012 International Conference on Power, Signals, Controls and Computation (EPSCICON) - Thrissur, Kerala, India. https://doi.org/10.1109/epscicon.2012.6175241DOI:.   DOI
33 Khan, S.H., Bhowmick, S.: A novel power-flow model of multi-terminal VSC-HVDC systems. Electric Power Syst. Res. 133, 219-227 (2016). https://doi.org/10.1016/j.epsr.2015.12.031   DOI