Browse > Article
http://dx.doi.org/10.1007/s43236-021-00284-y

MTPA-based high-frequency square wave voltage signal injection strategy for IPMSM control  

Zhang, Zeyu (National Key Laboratory of Science and Technology on Multispectral Information Processing and Key Laboratory of Image Processing and Intelligent Control, School of Artifcial Intelligence and Automation, Huazhong University of Science and Technology)
Shen, Anwen (National Key Laboratory of Science and Technology on Multispectral Information Processing and Key Laboratory of Image Processing and Intelligent Control, School of Artifcial Intelligence and Automation, Huazhong University of Science and Technology)
Li, Peihe (National Key Laboratory of Science and Technology on Multispectral Information Processing and Key Laboratory of Image Processing and Intelligent Control, School of Artifcial Intelligence and Automation, Huazhong University of Science and Technology)
Luo, Xin (National Key Laboratory of Science and Technology on Multispectral Information Processing and Key Laboratory of Image Processing and Intelligent Control, School of Artifcial Intelligence and Automation, Huazhong University of Science and Technology)
Tang, Qipeng (National Key Laboratory of Science and Technology on Multispectral Information Processing and Key Laboratory of Image Processing and Intelligent Control, School of Artifcial Intelligence and Automation, Huazhong University of Science and Technology)
Publication Information
Journal of Power Electronics / v.21, no.10, 2021 , pp. 1461-1472 More about this Journal
Abstract
This paper proposes a high-frequency (HF) square wave voltage signal injection strategy for interior permanent magnet synchronous motor (IPMSM) maximum torque per ampere (MTPA) drives. Unlike previous methods, this strategy injects a square wave HF signal into the voltage directly regardless of the current loop bandwidth limitations. In addition, the injected frequency can surpass the cut-off frequency of the current loop. Therefore, the disturbance caused by the injected signal can be reduced. The process of MTPA operating point adjustment only needs to sample and analyze the current amplitude without additional digital filters. Thus, the dynamic response promotes, and avoids the extra hardware and calculation burden. To decrease the convergence time when the load changes rapidly, an equivalent mathematical model of an IPMSM is employed to provide prior current references. Both simulation and experimental results confirm the validity and feasibility of the proposed strategy.
Keywords
Interior permanent magnet synchronous motor (IPMSM); Maximum torque per ampere (MTPA); High-frequency (HF) square wave voltage signal injection; Equivalent model;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Kim, S., Park, S.: Compensation of dead-time effects based on adaptive harmonic filtering in the vector-controlled AC motor drives. IEEE Trans. Ind. Electron. 54(3), 1768-1777 (2007)   DOI
2 Sun, T., Koc, M., Wang, J.: MTPA control of IPMSM drives based on virtual signal injection considering machine parameter variations. IEEE Trans. Ind. Electron. 65(8), 6089-6098 (2018)   DOI
3 Sun, T., Wang, J., Chen, X.: Maximum torque per ampere (MTPA) control for interior permanent magnet synchronous machine drives based on virtual signal injection. IEEE Trans. Power Electron. 30(9), 5036-5045 (2015)   DOI
4 Sun, T., Wang, J., Koc, M.: On accuracy of virtual signal injection based MTPA operation of interior permanent magnet synchronous machine drives. IEEE Trans. Power Electron. 32(9), 7405-7408 (2017)   DOI
5 Li, K., Wang, Y.: Maximum torque per ampere (MTPA) control for IPMSM drives based on a variable-equivalent-parameter MTPA control law. IEEE Trans. Power Electron. 34(7), 7092-7102 (2019)   DOI
6 Huang, W., Zhang, Y., Zhang, X., Sun, G.: Accurate torque control of interior permanent magnet synchronous machine. IEEE Trans. Energy Convers. 29(1), 29-37 (2014)   DOI
7 Hwang, S., Kim, J.: Dead time compensation method for voltage-fed PWM inverter. IEEE Trans. Energy Convers. 25(1), 1-10 (2010)   DOI
8 Qiu, T., Wen, X., Zhao, F.: Adaptive-linear-neuron-based dead-time effects compensation scheme for PMSM drives. IEEE Trans. Power Electron. 31(3), 2530-2538 (2016)   DOI
9 Bolognani, S., Petrella, R., Prearo, A., Sgarbossa, L.: Automatic tracking of MTPA trajectory in IPM motor drives based on AC current injection. IEEE Trans. Ind Appl. 47(1), 105-114 (2011)   DOI
10 Wang, G., Li, Z., Zhang, G., Yu, Y., Xu, D.: Quadrature PLL-based high order sliding-mode observer for IPMSM sensorless control with online MTPA control strategy. IEEE Trans. Energy Convers. 28(1), 214-224 (2013)   DOI
11 Zhao, Y.: Online MTPA control for salient-pole PMSMs using square-wave current injection. Proc. 2016 IEEE Energy Conversion Congress and Exposition (ECCE), 1-8 (2016)
12 Zhou, X., Zhou, Y., Wang, H., Lu, M., Zeng, F., Yu, Y.: An improved MTPA control based on amplitude-adjustable square wave injection. IEEE Trans. Energy Convers. 35(2), 956-965 (2020)   DOI
13 Zhao, Y.: Virtual square-wave current injection based maximum torque per ampere control for interior permanent-magnet synchronous machines. Proc. 2016 IEEE Transportation Electrification Conference and Expo (ITEC), 1-6 (2016)
14 Li, K., Wang, Y.: Maximum torque per ampere (MTPA) control for IPMSM drives using signal injection and an MTPA control law. IEEE Trans. Ind. Inf. 15(10), 5588-5598 (2019)   DOI
15 Shen, H., Xu, J., Yu, B., Tang, Q., Chen, B., Lou, C., Qiao, Y.: Seamless transition strategy for wide speed-range sensorless IPMSM drives with a virtual q-axis inductance. J Power Electron. 19(5), 1224-1234 (2019)   DOI
16 Liu, G., Yang, Y., Chen, Q.: Virtual signal injected MTPA control for DTC five-phase IPMSM drives. J Power Electron. 19(4), 956-967 (2019)   DOI
17 Chaoui, H., Okoye, O., Khayamy, M.: Current sensorless MTPA for IPMSM drives. IEEE/ASME Trans. Mechatron. 22(4), 1585-1593 (2017)   DOI
18 Consoli, A., Scarcella, G., Scelba, G., Testa, A.: Steady-state and transient operation of IPMSMs under maximum-torque-per-ampere control. IEEE Trans. Ind. Appl. 46(1), 121-129 (2010)   DOI
19 Urasaki, N., Senjyu, T., Funabashi, T., Sekine, H.: An adaptive dead-time compensation strategy for a permanent magnet synchronous motor drive using neural network. J Power Electron. 6(4), 279-289 (2006)
20 Jung, S.Y., Hong, J., Nam, K.: Current minimizing torque control of the IPMSM using Ferrari's method. IEEE Trans. Power Electron. 28(12), 5603-5617 (2013)   DOI
21 Jeong, Y., Sul, S., Hiti, S., Rahman, K.M.: Online minimum-copper-loss control of an interior permanent-magnet synchronous machine for automotive applications. IEEE Trans. Ind. Appl. 42(5), 1222-1229 (2006)   DOI
22 Dianov, A., Young-Kwan, K., Sang-Joon, L., Sang-Taek, L.: Robust self-tuning MTPA algorithm for IPMSM drives. Proc. Conf. IEEE Ind. Electron (2008). https://doi.org/10.1109/IECON.2008.4758151   DOI
23 Uddin, M.N., Radwan, T.S., Rahman, M.A.: Performance of interior permanent magnet motor drive over wide speed range. IEEE Trans. Energy Convers. 17(1), 79-84 (2002)   DOI
24 Antonello, R., Carraro, M., Zigliotto, M.: Maximum-torque-per-ampere operation of anisotropic synchronous permanent-magnet motors based on extremum seeking control. IEEE Trans. Ind. Electron. 61(9), 5086-5093 (2014)   DOI
25 Kim, H., Hartwig, J., Lorenz, R.D.: Using on-line parameter estimation to improve efficiency of IPM machine drives. Proc. 2002 IEEE 33rd Annual IEEE Power Electronics Specialists Conference. 815-820 (2002)
26 Liu, G., Wang, J., Zhao, W., Chen, Q.: A novel MTPA control strategy for IPMSM drives by space vector signal injection. IEEE Trans. Ind. Electron. 64(12), 9243-9252 (2017)   DOI
27 Wang, G., Yang, L., Yuan, B., Wang, B., Zhang, G., Xu, D.: Pseudo-random high-frequency square-wave voltage injection based sensorless control of IPMSM drives for audible noise reduction. IEEE Trans. Ind. Electron. 63(12), 7423-7433 (2016)   DOI
28 Kim, S., Yoon, Y., Sul, S., Ide, K.: Maximum torque per ampere (MTPA) control of an IPM machine based on signal injection considering inductance saturation. IEEE Trans. Power Electron. 28(1), 488-497 (2013)   DOI