Browse > Article
http://dx.doi.org/10.6113/JPE.2018.18.4.1007

Novel Dual DC-DC Flyback Converter with Leakage-Energy Recycling  

Yang, Lung-Sheng (Department of Electrical Engineering, Far East University)
Publication Information
Journal of Power Electronics / v.18, no.4, 2018 , pp. 1007-1014 More about this Journal
Abstract
A novel dual DC-DC flyback converter with leakage-energy recycling is presented in this paper. Only an active switch is used for this converter. A pulse-width-modulation strategy is adopeted to control this switch. Two transformers are employed for the proposed converter. During the switch ON-period, the primary windings of the two transformers store energies. At the switch OFF-period, the energies stored in the primary windings of the two transformers are released to the output via the secondary windings of the two transformers. Meanwhile, the leakage energies of the two transformers can be recycled. The operating principles and steady-state analyses of the proposed converter are described in detail. A prototype circuit of the proposed converter is implemented for verifying the performances.
Keywords
Flyback converter; Leakage-energy recycling; Pulse width modulation;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 T. J. Liang, W. Y. Huang, L. S. Yang, S. M. Chen, and J. F. Chen, "Interleaved Flyback Converter Device with Leakage Energy Recycling," UA Patent, No. US 8374000 B2, Feb. 2013.
2 C. O. Yeon, J. B. Lee, I. O. Lee, and G. W. Moon, "Wide ZVS range asymmetric half-bridge converter with clamp switch and diode for high conversion efficiency," IEEE Trans. Ind. Electron., Vol. 63, No. 5, pp. 2862-2870, May 2016.   DOI
3 M. Arias, M. F. Diaz, J. E. R. Cadierno, D. G. Lamar, and J. Sebastian, "Digital implementation of the feedforward loop of the asymmetrical half-bridge converter for LED lighting applications," IEEE J. Emerg. Sel. Topics Power Electron., Vol. 3, No. 3, pp. 642-653, Sep. 2015.   DOI
4 S. W. Choi, J. M. Lee, and J. Y. Lee, "High-efficiency portable welding machine based on full-bridge converter with ISOP-connected single transformer and active snubber," IEEE Trans. Ind. Electron., Vol. 63, No. 8, pp. 4868-4877, Aug. 2016.   DOI
5 W. J. Cha, J. M. Kwon, and B. H. Kwon, "Highly efficient asymmetrical PWM full-bridge converter for renewable energy sources," IEEE Trans. Ind. Electron., Vol. 63, No. 5, pp. 2945-2953, May 2016.   DOI
6 P. Xuewei and A. K. Rathore, "Current-fed soft-switching push-pull front-end converter-based bidirectional inverter for residential photovoltaic power pystem," IEEE Trans. Power Electron., Vol. 29, No. 11, pp. 6041-6051, Nov. 2014.   DOI
7 K. R. Sree and A. K. Rathore, "Impulse commutated zero-current switching current-fed push-pull converter: analysis, design, and experimental results," IEEE Trans. Ind. Electron., Vol. 62, No. 1, pp. 363-370, Jan. 2015.   DOI
8 S. J. Finney, B. W. Williams, and T. C. Green, "RCD snubber revisited," IEEE Trans. Ind. Appl., Vol. 32, No. 1, pp. 155-160, Jan./Feb. 1996.   DOI
9 M. G. Kim and Y. S. Jung, "A novel soft-switching twoswitch flyback converter with a wide operating range and regenerative clamping," J. Power Electron., Vol. 9, No. 5, pp. 772-780, Sep. 2009.
10 D. M. Bellur and M. K. Kazimierczuk, "Zero-currenttransition two-switch flyback pulse-width modulated DC-DC converter," IET Power Electron., Vol. 4, No. 3, pp. 288-295, Mar. 2011.   DOI
11 G. Spiazzi, P. Mattavelli, and A. Costabeber, "High step-up ratio flyback converter with active clamp and voltage multiplier," IEEE Trans. Power Electron., Vol. 26, No. 11, pp. 3205-3214, Nov. 2011.   DOI
12 G. Chen, Y. S. Lee, S. Y. R. Hui, D. Xu, and Y. Wang, "Actively clamped bidirectional flyback converter," IEEE Trans. Ind. Electron., Vol. 47, No. 4, pp. 770-779, Aug. 2000.   DOI
13 S. Miao, F. Wang, and X. Ma, "A new transformerless buck-boost converter with positive output voltage," IEEE Trans. Ind. Electron., Vol. 63, No. 5, pp. 2965-2975, May 2016.   DOI
14 P. Deivasundari, G. Uma, and S. Ashita, "Chaotic dynamics of a zero average dynamics controlled DC-DC Cuk converter," IET Power Electron., Vol. 7, No. 2, pp. 289-298, Feb. 2014.   DOI
15 Z. Chen, "PI and sliding mode control of a Cuk converter," IEEE Trans. Power Electron., Vol. 27, No. 8, pp. 3695-3703, Aug. 2012.   DOI
16 N. Pragallapati and V. Agarwal, "Distributed PV power extraction based on a modified interleaved SEPIC for nonuniform irradiation conditions," IEEE J. Photovolt., Vol. 5, No. 5, pp. 1442-1453, Sep. 2015.   DOI
17 H. Wu, P. Xu, W. Liu, and Y. Xing, "Series-input interleaved forward converter with a shared switching leg for wide input voltage range applications," IEEE Trans. Ind. Electron., Vol. 60, No. 11, pp. 5029-5039, Nov. 2013.   DOI
18 J. Yuan Lin, P. J, Liu, and C. Y. Yang, "A dual-transformer active-clamp forward converter with nonlinear conversion ratio," IEEE Trans. Power Electron., Vol. 31, No. 6, pp. 4353-4361, Jun. 2016.   DOI
19 K. B. Park, G. W. Moon, and M. J. Youn, "Two-switch active-clamp forward converter with one clamp diode and delayed turnoff gate signal," IEEE Trans. Ind. Electron., Vol. 58, No. 10, pp. 4768-4772, Oct. 2011.   DOI
20 P. Thummala, H. Schneider, Z. Zhang, Z. Ouyang, A. Knott, and M. A. E. Andersen, "Efficiency optimization by considering the high-voltage flyback transformer parasitics using an automatic winding layout technique," IEEE Trans. Power Electron., Vol. 30, No. 10, pp. 5755-5768, Oct. 2015.   DOI
21 G. M. L. Chu, D. D. C. Lu, and V. G. Agelidis, "Practical application of valley current mode control in a flyback converter with a large duty cycle," IET Power Electron., Vol. 5, No. 5, pp. 552-560, May 2012.   DOI
22 A. Fernandez, J. Sebastian, P. J. Villegas, M. M. Hernando, and L. A. Barcia, "Low-power flyback converter with synchronous rectification for a system with AC power distribution," IEEE Trans. Ind. Electron., Vol. 49, No. 3, pp. 598-606, Jun. 2002.
23 F. Marvi, E. Adib, and H. Farzanehfard, " Efficient ZVS synchronous buck converter with extended duty cycle and low-current ripple," IEEE Trans. Ind. Electron., Vol. 63, No. 9, pp. 5403-5409, Sep. 2016.   DOI
24 E. Babaei and M. E. S. Mahmoodieh, "Calculation of output voltage ripple and design considerations of SEPIC converter," IEEE Trans. Ind. Electron. Vol. 61, No. 3, pp. 1213-1222, Mar. 2014.   DOI
25 W. Hu, F. Zhang, X. Long, X. Chen, and W. Deng, "Stability analysis and control of nonlinear behavior in V2 switching buck converter," J. Power Electron., Vol. 14, No. 6, pp. 1208-1216, Nov. 2014.   DOI
26 V. I. Kumar and S. Kapat, "Unified digital current mode control tuning with near optimal recovery in a CCM buck converter," IEEE Trans. Power Electron., Vol. 31, No. 12, pp. 8461-8470, Dec. 2016.   DOI
27 Y. X. Wang, D. H. Yu, and Y. B. Kim, "Robust time-delay control for the DC-DC boost converter," IEEE Trans. Ind. Electron., Vol. 61, No. 9, pp. 4829-4837, Sep. 2014.   DOI
28 W. J. Choi, S. K. Kim, J. Kim, and K. B. Lee, "Inputconstrained current controller for DC/DC boost converter," J. Power Electron., Vol. 16, No. 6, pp. 2016-2023, Nov. 2016.   DOI
29 M. L. Nejad, B. Poorali, E. Adib, and A. A. M. Birjandi, "New cascade boost converter with reduced losses," IET Power Electron., Vol. 9, No. 6, pp. 1213-1219, May 2016.   DOI
30 C. Yao, X. Ruan, W. Cao, and P. Chen, "A two-mode control scheme with input voltage feed-forward for the two-switch buck-boost DC-DC converter," IEEE Trans. Power Electron., Vol. 29, No. 4, pp. 2037-2048, Apr. 2014.   DOI