Browse > Article
http://dx.doi.org/10.6113/JPE.2017.17.1.253

A Single-phase Harmonics Extraction Algorithm Based on the Principle of Trigonometric Orthogonal Functions  

Yi, Hao (State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University)
Zhuo, Fang (State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University)
Wang, Feng (State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University)
Li, Yu (Xi'an Spread Power Electric co., ltd.)
Wang, Zhenxiong (State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University)
Publication Information
Journal of Power Electronics / v.17, no.1, 2017 , pp. 253-261 More about this Journal
Abstract
For a single-phase active power filter (APF), designing a more efficient algorithm to guarantee accurate and fast harmonics extraction with a lower computing cost is still a meaningful topic. The common idea still employs a IRPT-based Park transform, which was originally designed for 3-phase applications. Therefore, an additional virtual signal generation (VSG) link is necessary when it is used in the single-phase condition. This method, with virtual signal generation and transform, is obviously not the most efficient one. Regarding this problem, this paper proposes a novel harmonics extraction algorithm to further improve efficiency. The new algorithm is based on the principle of trigonometric orthogonal functions (TOF), and its mathematical principle and physical meaning are introduced in detail. Its implementation and superiority in terms of computation efficiency are analyzed by comparing it with conventional methods. Finally, its effectiveness is well validated through detailed simulations and laboratory experiments.
Keywords
Harmonics extraction; Single-phase active power filter; Trigonometric orthogonal functions;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. R. Varquez and P. Saimeron, "Active power filter control using neural network technologies," Proc. Inst. Elect. Eng.-Elect. Power Appl., Vol. 150, No. 2, pp. 139-145, Mar. 2003.   DOI
2 L. Qian, D. Cartes, and H. Li, "Experimental verification and comparison of MAFC method and D - Q method for selective harmonic detection," in Proc. IEEE 32nd IECON, pp. 25-30, 2006.
3 M. Cirrincione, M. Pucci, G. Vitale, and A. Miraoui, "Current harmonic compensation by a single-phase shunt active power filter controlled by adaptive neural filtering," IEEE Trans. Ind. Electron., Vol. 56, No. 8, pp. 3128-3143, Aug. 2009.   DOI
4 G. Chang, C.-I. Chen, and Y.-F. Teng, "Radial basis function based neural network for harmonic detection," IEEE Trans. Ind. Electron., Vol. 57, No. 6, pp. 2171-2179, Jun. 2010.   DOI
5 W. Yifei and L. Yunwei, "Three-phase cascaded delayed signal cancellation PLL for fast selective harmonic detection," IEEE Trans. Ind. Electron., Vol. 60, No. 4, pp. 1452-1463, Apr. 2013.   DOI
6 L. Asiminoaei, S. Kalaschnikow, and S. Hansen, "Overall and selective compensation of harmonic currents in active filter applications," in Proc. CPE, pp. 153-160, May 2009.
7 K. Sergej, L. Asiminoaei, and S. Hansen, "Harmonic detection methods of active filters for adjustable speed drive applications," in Proc. 13th E PE, pp. 1-10, Sep. 2009.
8 H. Akagi, "New trends in active filters for power conditioning," IEEE Trans. Ind. Appl., Vol. 32, No. 3, pp. 1312-1322, May/Jun. 1996.   DOI
9 F. Z. Peng and J. S. Lai, "Generalized instantaneous reactive power theory for three-phase power systems," IEEE Trans. Instrum. Meas., Vol.45, No. 1, pp. 293-297, Feb. 1996.   DOI
10 J. L. Willems, "A new interpretation of the Akagi-Nabae power components for nonsinusoidal three-phase situations," IEEE Trans. Instrum. Meas., Vol. 41, No. 4, pp. 523-5297, Aug. 1992.   DOI
11 A. Luo, Y. Chen, Z. Shuai, and C. Tu, "An improved reactive current detection and power control method for single phase photovoltaic grid-connected DG system," IEEE Trans. Energy Convers., Vol. 28, No. 4, pp. 823-831, Sep. 2013.   DOI
12 H. Li, F. Zhuo, Z. Wang, W. Lei, and L. Wu, "A novel time-domain current-detection algorithm for shunt active power filters," IEEE Trans. Power Syst., Vol. 20, No. 2, pp. 644-651, May 2005.   DOI
13 R. Bojoi, G. Griva, V. Bostan, M. Guerriero, F. Farina, and F. Profumo, "Current control strategy for power conditioners using sinusoidal signal integrators in synchronous reference frame," IEEE Trans. Power Electron., Vol. 20, No. 6, pp. 1402-1412, Nov. 2005.
14 M. Karimi-Ghartemani, H. Mokhtari, M. R. Iravani, and M. Sedighy, "A signal processing system for extraction of harmonics and reactive current of single-phase systems," IEEE Trans. Power Del., Vol. 19, No. 3, pp. 979-986, Jun. 2004.
15 J. Zhu, L. Li, and M. Pan, "Research on modular STATCOM based on dynamic reactive current detection method," in Proc. of the 7th International Power Electronics and Motion Control Conference, pp. 2760-2764, Jul. 2012.
16 S. Gautam, P. Yunqing, Y. Kafle, M. Kashif, S. UI-Hasan, "Evaluation of fundamental d-q synchronous reference frame harmonic detection method for single phase shunt active power filter," International Journal of Power Electronics and Drive System (IJPEDS), Vol. 4, No. 1, pp. 112-126, Mar. 2014.
17 M. Saitou, N. Matsui, and T. Shimizu, "A control strategy of single-phase active filter using a novel d-q transformation," in Proc. of the Industry Applications Conference 2003 (IAS'03), Vol. 2, pp. 1222-1227, Oct. 2003.
18 S. M. Silva, B. M. Lopes, J. C. Filho, R. P. Campana, and W. C. Bosventura, "Performance evaluation of PLL algorithms for single-phase grid-connected systems," in Proc. of Industry Applications Conference 2004 (IAS'04), Vol. 4, pp. 2259-2263, Oct. 2004.
19 P. Mattavelli and F. P. Marafao, "Repetitive-based control for selective harmonic compensation in active power filters," IEEE Trans. Ind. Electron., Vol. 51, No. 5, pp. 1078-1024, Oct. 2004.   DOI
20 Q.-N. Trinh and H.-H. Lee, "An advanced current control strategy for three-phase shunt active power filters," IEEE Trans. Ind. Electron., Vol. 60, No. 12, pp. 5400-5410, Dec. 2013.   DOI
21 H. Yi, F. Zhuo, Y. Zhang, Y. Li, W. Zhan, W. Chen, and J. Liu, "A source-current-detected shunt active power filter control scheme based on vector resonant controller," IEEE Trans. Ind. Appl., Vol. 50, No. 3, pp.1953-1965, May/Jun. 2014.   DOI
22 X. Wang, F. Blaabjerg, and Z. Chen, "Autonomous control of inverter-interfaced distributed generation units for harmonic current filtering and resonance damping in an islanded microgrid," IEEE Trans. Ind. Appl., Vol. 50, No. 1, pp. 452-461, Jan./Feb. 2014.   DOI
23 E. Jacobsen and R. Lyons, "An update to the sliding DFT," IEEE Signal Process Mag., Vol. 21, No. 1, pp. 110-111, Jan. 2004.
24 P. Rodriguez, R. Teodorescu, I. Candela, A. V. Timbus, M. Liserre, and F. Blaabjerg, "New positive-sequence voltage detector for grid synchronization of power converters under faulty grid conditions," in Proc. of the IEEE Power Electronics Special Conference (PESC'06), pp. 1-7, 2006.
25 J. He, Y. W. Li, F. Blaabjerg, and X. Wang, "Active harmonic filtering using current-controlled, grid-connected DG units with closed-loop power control," IEEE Trans. Power Electron., Vol. 29, No. 2, pp. 642-653, Feb. 2014.   DOI
26 W. M. Grady, M. J. Samotj, and A. H. Noyola, "Survey of active power line conditioning methodologies," IEEE Trans. Power Del., Vol. 5, No. 3, pp. 1536-1542, Jul. 1990.   DOI
27 L. A. Moran, J. W. Dixon, and R. R. Wallace, "A three-phase active power filter operating with fixed switching frequency for reactive power and current harmonic compensation," IEEE Trans. Ind. Electron., Vol. 42, No. 4, pp. 402-408, Aug. 1995.   DOI
28 B. McGrath, D. Holmes, and J. Galloway, "Power converter line synchronization using a discrete Fourier transform (DFT) based on a variable sample rate," IEEE Trans. Power Electron., Vol. 20, No. 4, pp. 877-884, Jul. 2005.   DOI
29 S. Gonzalez, R. Garcia-Retegui, and M. Benedetti, "Harmonic computation technique suitable for active power filters," IEEE Trans. Ind. Electron., Vol. 54, No. 5, pp. 2791-2796, Oct. 2007.   DOI
30 E. Jacobsen and R. Lyons, "The sliding DFT," IEEE Signal Process Mag., Vol. 20, No. 2, pp. 74-80, Mar. 2003.
31 S. K. Jain, P. Agrawal, and H. O. Gupta, "Fuzzy logic controlled shunt active power filter for power quality improvement," Proc. Inst. Elect. Eng.-Elect. Power Appl., Vol. 149, No. 5, pp. 317-328, Sep. 2002.   DOI
32 S. Liu, "An adaptive Kalman filter for dynamic estimation of harmonic signals," in Proc. 8th Int. Conf. Harmonics Quality Power, pp. 286-292, 1998.
33 S. Luo and Z. Hou, "An adaptive detecting method for harmonic and reactive currents," IEEE Trans. Ind. Electron., Vol. 42, No. 1, pp. 85-89, Feb. 1995.   DOI