Browse > Article
http://dx.doi.org/10.6113/JPE.2016.16.2.512

An Improved Phase-Shifted Carrier Pulse Width Modulation Based on the Artificial Bee Colony Algorithm for Cascaded H-Bridge Multilevel Inverters  

Cai, Xinjian (State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology)
Wu, Zhenxing (National Key Laboratory for Vessel Integrated Power System Technology)
Li, Quanfeng (School of Electrical Engineering, Zhejiang University)
Wang, Shuxiu (National Key Laboratory for Vessel Integrated Power System Technology)
Publication Information
Journal of Power Electronics / v.16, no.2, 2016 , pp. 512-521 More about this Journal
Abstract
Cascaded H-bridge multilevel (CHBML) inverters usually include a large number of isolated dc-voltage sources. Some faults in the dc-voltage sources result in unequal cell dc voltages. Unfortunately, the conventional phase-shifted carrier (PSC) PWM method that is widely used for CHBML inverters cannot eliminate low frequency sideband harmonics when the cell dc voltages are not equal. This paper analyzes the principle of sideband harmonic elimination, and proposes an improved PSCPWM that can eliminate low frequency sideband harmonics under the condition of unequal dc voltages. In order to calculate the carrier phases, it is necessary to solve transcendental equations for low frequency sideband harmonic elimination. Therefore, an approach based on the artificial bee colony (ABC) algorithm is presented in this paper. The proposed PSCPWM method enhances the reliability of CHBML inverters. The proposed PSCPWM is not limited to CHBML inverters. It can also be applied to other types of multilevel inverters. Simulation and experimental result obtained from a prototype CHBML inverter verify the theoretical analysis and the achievements made in this paper.
Keywords
Artificial bee colony algorithm; Cascaded H-bridge multilevel (CHBML) inverter; Phase-shifted carrier pulse width modulation (PSCPWM); Unequal dc voltages;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D. C. Ludois, J. K. Reed, and G. Venkataramanan, “Hierarchical control of bridge-of-bridge multilevel power converters,” IEEE Trans. Industrial Electron., Vol. 57, No. 8, pp. 2679-2690, Aug. 2010.   DOI
2 A. Ghazanfari, H. Mokhtari, and M. Firouzi, “Simple voltage balancing approach for CHB multilevel inverter considering low harmonic content based on a hybrid optimal modulation strategy,” IEEE Trans. Power Del., Vol. 27, No. 4, pp. 2150-2158, Oct. 2012.   DOI
3 C. D. Townsend, T. J. Summers, and R. E. Betz, “Multi-goal heuristic model predictive control technique applied to a cascaded H-bridge StatCom,” IEEE Trans. Power Electron., Vol. 27, No. 3, pp. 1191-1200, Mar. 2012.   DOI
4 H. Sepahvand, J. Liao, and M. Ferdowsi, “Capacitor voltage regulation in single-dc-source cascaded H-bridge multilevel converters using phase-shift modulation,” IEEE Trans. Ind. Electron., Vol. 60, No. 9, pp. 3619-3626, Sep. 2013.   DOI
5 N. Hatano and T. Ise, “Control scheme of cascaded H-bridge STATCOM using zero-sequence voltage and negative-sequence current,” IEEE Trans. Power Del., Vol. 25, No. 2, pp. 543-550, Apr 2010.   DOI
6 C. D. Townsend, T. J. Summers, J. Vodden, A. J. Watson, R. E. Betz, and J. C. Clare, “Optimization of switching losses and capacitor voltage ripple using model predictive control of a cascaded H-bridge multilevel StatCom,” IEEE Trans. Power Electron., Vol. 28, No. 7, pp. 3077-3087, Jul. 2013.   DOI
7 M. Moosavi, G. Farivar, H. I. Eini, and S. M. Shekaribi, “A voltage balancing strategy with extended operating region for cascaded H-bridge converters,” IEEE Trans. Power Electron., Vol. 29, No. 9, pp. 5044-5053, Sep. 2014.   DOI
8 P. Cortes, A. Wilson, S. Kouro, J. Rodriguez, and H. Abu-Rub, “Model predictive control of multilevel cascaded H-bridge inverters,” IEEE Trans. Ind. Electron., Vol. 57, No. 8, pp. 2691-2698, Aug. 2010.   DOI
9 C.D. Townsend, T.J. Summers, and R.E. Betz, “Impact of practical issues on the harmonic performance of phase-shifted modulation strategies for a cascaded H-bridge StatCom,” IEEE Trans. Ind. Electron., Vol. 61, No. 6, pp. 2655-2664, Jun. 2014.   DOI
10 P. Lezana, R. Aceiton, and C. Silva, “Phase-disposition PWM implementation for a hybrid multi-cell converter,” IEEE Trans. Ind. Electron., Vol. 60, No. 5, pp. 1936-1642, May. 2013.   DOI
11 W. Song and A. Q. Huang, “Fault-tolerant design and control strategy for cascaded H-bridge multilevel converter-based STATCOM,” IEEE Trans. Ind. Electron., Vol. 57, No. 8, pp. 2700-2708, Aug. 2010.   DOI
12 R. Rabinovici, D. Baimel, J. Tomasik, and A. Zuckerberger, “Thirteen-level cascaded H-bridge inverter operated by generic phase shifted pulse width modulation,” IET Power Electron., pp. 1516-1529, Vol. 6, Iss. 8, 2013.   DOI
13 Y.M. Park, J.Y. Yoo, and S. B. Lee, “Practical implementation of PWM synchronization and phase-shift method for cascaded H-bridge multilevel inverters based on a standard serial communication protocol,” IEEE Trans. Ind. Appl., Vol. 44, No. 2, pp. 634-641, Mar./Apr. 2008.   DOI
14 G. P. Adam, K. H. Ahmed, S. J. Finney, and K. Bell, B.W. Williams, “New breed of network fault-tolerant voltage-source-converter HVDC transmission system,” IEEE Trans. Power Syst., Vol. 28, No. 1, pp. 335-346, Feb. 2013.   DOI
15 P. Lezana, T. Aguilera, and J. Rodriguez, “Fault detection on multi-cell converter based on output voltage frequency analysis,” IEEE Trans. Ind. Electron., Vol. 56, No. 6, pp. 2275-2283, Jun. 2009.   DOI
16 S. Khomfoi and L.M. Tolbert, “Fault diagnosis and reconfiguration for multilevel inverter drive using AI-based techniques,” IEEE Trans. Ind. Electron., Vol. 54, No. 6, pp. 2954-2968, Dec. 2007.   DOI
17 C. Turpin, P. Baudesson, F. Richardeau, F. Forest, and T.A. Meynard, “Fault management of multi-cell converters,” IEEE Trans. Ind. Electron., Vol. 49, No. 5, pp. 988-997, Oct. 2002.   DOI
18 M. S. A. Dahidah and V. G. Agelidis, “Selective harmonic elimination PWM control for cascaded multilevel voltage source converters: a generalized formula,” IEEE Trans. Power Electron., Vol. 23, No. 4, pp. 1620-1630, Jul. 2008.   DOI
19 P. Barriuso, J. Dixon, P. Flores, and L. Moran, “Fault-tolerant reconfiguration system for asymmetric multilevel converters using bidirectional power switches,” IEEE Trans. Ind. Electron., Vol. 56, No. 4, pp. 1300-1306, Apr. 2009.   DOI
20 F. Filho, H. Z. Maia, T. H. A. Mateus, and B. Qzpineci, “Adaptive selective harmonic minimization based on ANNs for cascade multilevel inverters with varying DC sources,” IEEE Trans. Ind. Electron., Vol. 60, No. 5, pp. 1955-1962, May 2013.   DOI
21 J.N. Chiasson, Z. Du, and K.J. McKenzie, “Elimination of harmonics in a multilevel converter with nonequal DC sources,” IEEE Trans. Ind. Appl., Vol. 41, No. 1, pp. 75-82, Jan./Feb. 2005.   DOI
22 J. Napoles, A. J. Watson, J. J. Padilla, J. I. Leon, L. G. Franquelo, P. W. Wheeler, and M. A. Aguirre, “Selective harmonic mitigation technique for cascaded H-bridge converters with nonequal DC link voltages,” IEEE Trans. Ind. Electron., Vol. 60, No. 5, pp. 1963-1971, May. 2013.   DOI
23 Y. Liu, H. Hong, and A. Q. Huang, “Real-time algorithm for minimizing THD in multilevel inverters with unequal or varying voltage steps under staircase modulation,” IEEE Trans. Ind. Electron., Vol. 56, No. 6, pp. 2249-2258, Jun. 2009.   DOI
24 B. N. Roodsari and E. P. Nowicki, “Fast space vector modulation algorithm for multilevel inverters and its extension for operation of the cascaded H-bridge inverter with non-constant DC sources,” IET Power Electron., Vol. 6, No. 7, pp. 1288-1298, 2013.   DOI
25 J. N. Chiasson, L. M. Tolbert, K. J. McKenzie, and Z. Du, “A unified approach to solving the harmonic elimination equations in multilevel converters,” IEEE Trans. Power Electron., Vol. 19, No. 2, pp. 478-490, Mar. 2004.   DOI
26 V. Naumanen, J. Luukko, P. Silventoinen, J. Pyrhonen, H. Saren, and K. Rauma, “Compensation of DC link voltage variation of a multilevel series-connected H-bridge inverter,” IET Power Electron., Vol. 3, No. 5, pp. 793-803, 2010.   DOI
27 M. H. Etesami, N. Farokhnia, and S. H. Fathi, “Colonial competitive algorithm development toward harmonic minimization in multilevel inverters,” IEEE Trans. Ind. Informat., Vol. 11, No. 2, pp. 459-466, Apr. 2015.   DOI
28 N. Farokhnia, H. Vadizadeh, S. H. Fathi, and F. Anvariasl, “Calculating the formula of line-voltage THD in multilevel inverter with unequal DC sources”, IEEE Trans. Ind. Electron., Vol. 58, No. 8, pp. 3359-3372, Aug. 2011.   DOI
29 H. Taghizadeh and M. Tarafdar Hagh, “Harmonic elimination of cascade multilevel inverters with nonequal DC sources using particle swarm optimization,” IEEE Trans. Ind. Electron., Vol. 57, No. 11, pp. 3678-3684, Nov. 2010.   DOI
30 D. G. Holmes, B. P. McGrath, and B.P. Mcgrath, “Opportunities for harmonic cancellation with carrier-based PWM for two-level and multilevel cascaded inverters,” IEEE Trans. Ind. Appl., Vol. 37, No. 2, pp. 574-582, Mar./Apr. 2001.   DOI
31 M. Odavic, M. Sumner, P. Zanchetta, and J. C. Clare, “A theoretical analysis of the harmonic content of PWM waveforms for multiple-frequency modulators,” IEEE Trans. Power Electron., Vol. 25, No. 1, pp. 131-141, Jan. 2010.   DOI
32 D. Karaboga, "An idea based on honey bee swarm for numerical optimization," Erciyes Univ., Kayseri, Turkey, Tech. Rep.-TR06, 2005.
33 Z. Liu, B. Liu, S. Duan, and Y. Kang, “A novel DC capacitor voltage balance control method for cascaded multilevel STATCOM,” IEEE Trans. Power Electron., Vol. 27, No. 1, pp. 14-27, Jan. 2012.   DOI
34 F. Dend and Z. Chen, “Voltage-balancing method for modular multilevel converters under phase-shifted carrier-based pulse width modulation,” IEEE Trans. Ind. Electron., Vol. 62, No. 7, pp. 4158-4169, Jul. 2015.   DOI
35 M. B. D. Alvarenga and J. A. Pomilio, “Voltage balancing and commutation suppression in symmetrical cascaded multilevel converters for power quality application,” IEEE Trans. Ind. Electron., Vol. 61, No. 11, pp. 5996-6003, Nov. 2014.   DOI
36 A. Ghazanfari, H, Mokhtari, and M. Firouzi, “Simple voltage balancing approach for CHB multilevel inverter considering low harmonic content based on a hybrid optimal modulation strategy,” IEEE Trans. Power Del., Vol. 27, No. 4, pp. 2150-2158, Oct. 2012.   DOI