Browse > Article
http://dx.doi.org/10.6113/JPE.2016.16.1.48

Demagnetization Detection for IPM-type BLDCMs According to Irreversible Demagnetization Patterns and Pole-Slot Coefficients  

Kang, Dong-Hyeok (Department of Electrical Engineering, University of Ulsan)
Kim, Hyung-Kyu (Department of Electrical Engineering, University of Ulsan)
Park, Jun-Kyu (Department of Electrical Engineering, University of Ulsan)
Hyun, Seung-Ho (Department of Electrical Engineering, University of Ulsan)
Hur, Jin (Department of Electrical Engineering, Incheon National University)
Publication Information
Journal of Power Electronics / v.16, no.1, 2016 , pp. 48-56 More about this Journal
Abstract
This paper proposes a method for detecting irreversible demagnetization using the harmonic analysis of back electromotive force (BEMF) in interior permanent magnet-type brushless DC motors. First, demagnetization patterns, such as equality, inequality, and weighted demagnetizations, are defined and classified by considering the possibility of demagnetization resulting from motor operating characteristics. Second, an available diagnostic model for the harmonic analysis of BEMFs is defined according to pole-slot coefficients because the characteristics of BEMFs under demagnetization conditions are affected by the combination of poles and slots. Third, BEMFs and their harmonic components under normal and demagnetization conditions are analyzed through simulation and experiment to verify the proposed demagnetization detection technique.
Keywords
Brushless DC motors; Demagnetization; Demagnetization patterns; Fault diagnosis; Permanent magnet motors; Pole- slot coefficient;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. Sarikhani and O. A. Mohammed, “Inter-turn fault detection in PM synchronous machines by physics-based back electromotive force estimation,” IEEE. Trans. Ind. Electron., Vol. 60, No. 8, pp. 3472-3484, Aug. 2013.   DOI
2 D. H. Kang, J. K. Park, S. H. Hyun, and J. Hur, "BEMF characteristic analysis of IPM type motor according to demagnetization pattern of permanent magnet," in proc. International Conference on Power Electronics and ECCE Asia (ICPE-ECCE Asia), pp. 714-721, 2015.
3 J. A. Farooq, A. Djerdir, and A. Miraoui, “Analytical modeling approach to detect magnet defects in permanentmagnet brushless motors,” IEEE. Trans. Magn., Vol. 44, No. 12, pp. 4599-4604, Dec. 2008.   DOI
4 S. Rajagopalan, W. Roux, T. G. Habeltler, and R. G. Harley, “Dynamic eccentricity and demagnetization rotor magnet detection in trapezoidal flux (Brushless DC)motors operating under different load conditions,” IEEE. Trans. Power Electron., Vol. 22, No. 5, pp. 2061-2069, Sep. 2007.   DOI
5 D. J. McFarland and T. M. Jahns, “Investigation of the rotor demagnetization characteristics of interior PM synchronous machines during fault conditions,” IEEE. Trans. Ind. Applicat., Vol. 50, No. 4, pp. 2768-2775, Jul./Aug. 2014.   DOI
6 S. Rajagopalan, J. M. Aller, J. A. Restrepo, T. G. Habetler, and R. G. Harley, “Analytic-wavelet-ridge-based detection of dynamic eccentricity in brushless direct current (BLDC)motors functioning under dynamic operating conditions,” IEEE. Trans. Ind. Electron., Vol. 54, No. 3, pp. 1410-1419, Jun. 2007.   DOI
7 J. Urresty, J.-R. Riba Ruiz, M. Delgado, and L. Romeral, “Detection of demagnetization faults in surface-mounted permanent magnet synchronous motors by means of the zero-sequence voltage component,” IEEE. Trans. Energy Convers., Vol. 27, No. 1, pp. 42-51, Mar. 2012.   DOI
8 D. Torregrossa, A. Khoobroo, and B. Fahimi, “Prediction of acoustic noise and torque pulsation in PM synchronous machine with static eccentricity and partial demagnetization using field reconstruction method,” IEEE Trans. Ind. Electron., Vol. 59, No. 2, pp. 934-944, Feb. 2012.   DOI
9 Y. S. Lee, K. T. Kim, and J. Hur, “Finite-element analysis of the demagnetization of IPM-type BLDC motor with stator turn fault,” IEEE. Trans. Magn., Vol. 50, No. 2, Feb. 2014.
10 J. M. Hong, S. U. Park, D. S. Hyun, T. J. Kang, S. B. Lee, and C. Kral, “Detection and classification of rotor demagnetization and eccentricity faults for PM synchronous motors,” IEEE. Trans. Ind. Applicat., Vol. 48, No. 3, pp. 923-932, May/Jun. 2012.   DOI
11 P. Zhou, D. Lin, Y. Xiao, N. Lambert, and M. A. Rahman, “Temperature-dependent demagnetization model of permanent magnets for finite element analysis,” IEEE. Trans. Magn., Vol. 48, No.2, pp. 1031-1034, Feb. 2012.   DOI
12 T. Hosoi, H. Watanabe, K. Shima, T. Fukami, R. Hanaoka, and S. Takata, “Demagnetization analysis of additional permanent magnets in salient-pole synchronous machines with damper bars under sudden short circuits,” IEEE. Trans. Ind. Electron., Vol. 59, No. 6, pp. 2448-2456, Jun. 2012.   DOI
13 A. G. Espinosa, J. A. Rosero, J. Cusido, L. Romeral, and J. A. Ortega, “Fault detection by means of Hilbert-Huang transform of the stator current in a PMSM with demagnetization,” IEEE. Trans. Energy Convers., Vol. 25, No. 2, pp. 312-318, Jun. 2010.   DOI
14 K. C. Kim, K. S. Kim, H. J. Kim, and J. Lee, “Demagnetization analysis of permanent magnets according to rotor types of interior permanent magnet synchronous motor,” IEEE. Trans. Magn., Vol. 45, No. 6, pp. 2799-2802, Jun. 2009.   DOI
15 L. Silong, L. Yingjie, and B. Sarlioglu, “Partial Irreversible Demagnetization assessment of flux-switching permanent magnet machine using ferrite permanent magnet material,” IEEE. Trans. Magn., Vol. 51, No. 7, Feb. 2015.   DOI
16 V. I. Patel, J. Wang, and S. S. Nair, “Demagnetization assessment of fractional-slot and distributed wound 6-phase permanent magnet machines,” IEEE. Trans. Magn., Vol. 51, No. 6, Dec. 2014.