Browse > Article
http://dx.doi.org/10.1016/j.cap.2018.08.009

Simultaneous regulation of photoabsorption and ferromagnetism of NaTaO3 by Fe doping  

Yang, Huan (School of Chemistry and Materials Science of Shanxi Normal University & Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education)
Zhang, Liguo (School of Chemistry and Materials Science of Shanxi Normal University & Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education)
Yu, Lifang (School of Chemistry and Materials Science of Shanxi Normal University & Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education)
Wang, Fang (School of Chemistry and Materials Science of Shanxi Normal University & Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education)
Ma, Zhenzhen (School of Chemistry and Materials Science of Shanxi Normal University & Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education)
Zhou, Jie (School of Chemistry and Materials Science of Shanxi Normal University & Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education)
Xu, Xiaohong (School of Chemistry and Materials Science of Shanxi Normal University & Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education)
Abstract
$NaTa_{1-x}Fe_xO_3$ ($0{\leq}x{\leq}0.40$) nanocubes were synthesized by a relatively low temperature hydrothermal method, using $Ta_2O_5$, $FeCl_3$ and NaOH as the precursors. The UV-vis diffuse reflectance spectra showed that $NaTa_{1-x}Fe_xO_3$ had significant visible-light-absorbing capability, and the absorption edge of $NaTaO_3$ shifted to longer wavelength with the increase of Fe dopants. Moreover, $NaTa_{1-x}Fe_xO_3$ exhibited room-temperature ferromagnetism when $Fe^{3+}$ occupied $Ta^{5+}$ sites in $NaTaO_3$ crystal lattice. The ferromagnetism is mainly attributed to the superexchange interactions between doped $Fe^{3+}$, rather than the contribution of oxygen vacancies caused by Fe doping. Therefore, Fe doping can simultaneously regulate the optical and magnetic properties of $NaTaO_3$ semiconductor, which will enable its potential applications in multifunctional optical-electronics and opticalspintronics devices.
Keywords
$NaTaO_3$; Doping; Photoabsorption; Ferromagnetism; Hydrothermal method;
Citations & Related Records
연도 인용수 순위
  • Reference
1 E.V. Ramana, S.M. Yang, R. Jung, M.H. Jung, B.W. Lee, C.U. Jung, J. Appl. Phys. 113 (2013) 187219.   DOI
2 H.S. Kim, L. Bi, G.F. Dionne, C.A. Ross, Appl. Phys. Lett. 93 (2008) 092506.   DOI
3 H. Nakayama, H. Katayama-Yoshida, Jpn. J. Appl. Phys. 40 (2001) L1355-L1358.   DOI
4 S. Ray, Y.V. Kolen'ko, K.A. Kovnir, O.I. Lebedev, S. Turner, T. Chakraborty, R. Erni, T. Watanabe, G.V. Tendeloo, M. Yoshimura, M. Itoh, Nanotechnology 23 (2012) 025702.   DOI
5 R.J. Green, T.Z. Regier, B. Leedahl, J.A. McLeod, X.H. Xu, G.S. Chang, E.Z. Kurmaev, A. Moewes, Phys. Rev. Lett. 115 (2015) 167401.   DOI
6 F.X. Jiang, D. Chen, G.W. Zhou, Y.N. Wang, X.H. Xu, Sci. Rep. 8 (2018) 2417.   DOI
7 Z.Y. Quan, X. Liu, Y. Qi, Z.L. Song, S.F. Qi, G.W. Zhou, X.H. Xu, Appl. Surf. Sci. 399 (2017) 751-757.   DOI
8 J.C. Yu, J.G. Yu, W.K. Ho, Z.T. Jiang, L.Z. Zhang, Chem. Mater. 14 (2002) 3808-3816.   DOI
9 L.H. Yang, H.M. Qiu, L.Q. Pan, Z.G. Guo, M. Xu, J.H. Yin, X.D. Zhao, J. Magn. Magn Mater. 350 (2014) 1-5.   DOI
10 A. Sobhani, M. Salavati-Niasari, J. Alloys Compd. 625 (2015) 26-33.   DOI
11 O. Amiri, M. Salavati-Niasari, N. Mir, F. Beshkar, M. Saadat, F. Ansari, Renew. Energy 125 (2018) 590-598.   DOI
12 D.A. Schwartz, D.R. Gamelin, Adv. Mater. 16 (2004) 2115-2119.   DOI
13 T.Z. Tong, J.L. Zhang, B.Z. Tian, F. Chen, D.N. He, J. Hazard Mater. 155 (2008) 572-579.   DOI
14 M. Valant, T. Kolodiazhnyi, I. Arcon, F. Aguesse, A.K. Axelsson, N.M. Alford, Adv. Funct. Mater. 22 (2012) 2114-2122.   DOI
15 F.F. Li, D.R. Liu, G.M. Gao, B. Xue, Y.S. Jiang, Appl. Catal. B Environ. 166-167 (2015) 104-111.   DOI
16 L. Yin, X.C. Wang, W.B. Mi, ACS Appl. Mater. Interfaces 10 (2018) 3822-3829.   DOI
17 W.Z. Si, Y. Wang, Y. Peng, J.H. Li, Angew. Chem. Int. Ed. 127 (2015) 8065-8068.   DOI
18 L. Wang, J. Li, M.J. Feng, L.F. Min, J. Yang, S.H. Yu, Y.C. Zhang, X.Y. Hu, Z.J. Yang, Biosens. Bioelectron. 810 (2018) 95-99.
19 H. Kato, A. Kudo, Catal. Lett. 58 (1999) 153-155.   DOI
20 L.J. An, H. Onishi, ACS Catal. 5 (2015) 3196-3206.   DOI
21 X.Y. Wu, S. Yin, B. Liu, M. Kobayashi, M. Kakihana, T. Sato, J. Mater. Chem. A 2 (2014) 20832-20840.   DOI
22 B.C. Wang, P.D. Kanhere, Z. Chen, J. Nisar, B. Pathak, R. Ahuja, J. Phys. Chem. C 117 (2013) 22518-22524.   DOI
23 Y.G. Su, S.W. Wang, Y. Meng, H. Han, X.J. Wang, RSC Adv. 2 (2012) 12932-12939.   DOI
24 X. Zhou, J.Y. Shi, C. Li, J. Phys. Chem. C 115 (2011) 8305-8311.   DOI
25 J. He, X.M. Lu, W.L. Zhu, Y.Y. Hou, R.X. Ti, F.Z. Huang, X.L. Lu, T.T. Xu, J. Su, J.S. Zhu, Appl. Phys. Lett. 107 (2015) 012409.   DOI