Browse > Article
http://dx.doi.org/10.1016/j.cap.2018.06.012

A spectroscopic study of the effect of humidity on the atmospheric pressure helium plasma jets  

Han, Duksun (Plasma Technology Research Center, National Fusion Research Institute)
Abstract
Atmospheric-pressure plasma has a great potential in many applications due to its simplicity rather than low pressure plasmas. In material processing, biomedical applications, and many other applications, the input power, gas flow rate, and the geometry of electrode have been mainly considered and studied as important external parameters of atmospheric-pressure plasma control. Besides, since the atmospheric-pressure plasmas are typically generated in an open air, the relative humidity is difficult to control and can change day by day. Therefore, the relative humidity cannot be ignored for plasmas. Thus, in this work, the atmospheric-pressure plasma jet was characterized by changing relative humidity, and it was found that the increase in electron density and OH radicals are due to Penning ionization between helium metastable and water vapors at higher humidity condition.
Keywords
Absorption spectroscopy; Absolute radical density; Atmospheric-pressure plasma jet; Penning ionization; ROS;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. Tendero, C. Tixier, P. Tristant, J. Desmaison, P. Leprince, Spectrochim. Acta, Part B 61 (2006) 2.   DOI
2 J.Y. Jeong, S.E. Babayan, V.J. Tu, J. Park, I. Hennis, R.F. Hicks, G.S. Selwyn, Plasma Sources Sci. Technol. 7 (1998) 282.   DOI
3 S.E. Babayan, J.Y. Jeong, V.J. Tu, J. Park, G.S. Selwyn, R.F. Hicks, Plasma Sources Sci. Technol. 7 (1998) 286.   DOI
4 G. Fridman, G. Friedman, A. Gutsol, A.B. Shekhter, V.N. Vasilets, A. Fridman, Plasma Process. Polym. 5 (2008) 503.   DOI
5 M. Laroussi, Plasma Process. Polym. 2 (2005) 391.   DOI
6 S. Iseki, K. Nakamura, M. Hayashi, H. Tanaka, H. Kondo, Appl. Phys. Lett. 100 (2012) 113702.   DOI
7 D. Han, J.H. Cho, R.H. Lee, W. Bang, K. Park, M.S. Kim, J.H. Shim, J.I. Chae, S.Y. Moon, Sci. Rep. 7 (2017) 43081.   DOI
8 S.J. Kim, T.H. Chung, Sci. Rep. 6 (2016) 20332.   DOI
9 D.X. Liu, P. Bruggeman, F. Iza, M.Z. Rong, M.G. Kong, Plasma Sources Sci. Technol. 19 (2010) 025018.   DOI
10 W.V. Gaens, A. Bogaerts, J. Phys. D Appl. Phys. 47 (2014) 079502.   DOI
11 A.Y. Nikiforov, A. Sarani, C. Leys, Plasma Sources Sci. Technol. 20 (2011) 015014.   DOI
12 J.J. Liu, M.G. Kong, J. Phys. D Appl. Phys. 44 (2011) 345203.   DOI
13 X. Lu, M. Laroussi, J. Appl. Phys. 100 (2006) 063302.   DOI
14 J.L. Walsh, J.J. Shi, M.G. Kong, Appl. Phys. Lett. 88 (2006) 171501.   DOI
15 J.Y. Kim, J. Ballato, S.-O. Kim, Plasma Process. Polym. 9 (2012) 253.   DOI
16 S.Y. Moon, W. Choe, Spectrochim. Acta B Atom Spectrosc. 58 (2003) 249.   DOI
17 G. Faure, S.M. Shkol'nik, J. Phys. D 31 (1998) 1212.   DOI
18 P. Bruggeman, G. Cunge, N. Sadeghi, Plasma Sources Sci. Technol. 21 (2012) 035019.   DOI
19 A.C. Gentile, M.J. Kushner, J. Appl. Phys. 78 (1995) 2074.   DOI
20 Q. Xiong, Z. Yang, P. Bruggeman, J. Phys. D Appl. Phys. 48 (2015) 424008.   DOI
21 H. Ohmi, J. Sato, T. Hirano, Y. Kubota, H. Kakiuchi, Appl. Phys. Lett. 109 (2016) 211603.   DOI
22 H.-P. Dorn, R. Neuroth, A. Hofzumahaus, J. Geophys. Res. 100 (1995) 7397.   DOI
23 J.P. Booth, G. Cunge, F. Neuilly, N. Sadeghi, Plasma Sources Sci. Technol. 7 (1998) 423.   DOI
24 A. Schutze, J.Y. Jeong, S.E. Babayan, J. Park, Gary S. Selwyn, R.F. Hicks, IEEE Trans. Plasma Sci. 26 (1998) 1685.   DOI
25 D. Han, S.Y. Moon, Plasma Process. Polym. 12 (2015) 172.   DOI