Browse > Article
http://dx.doi.org/10.1016/j.cap.2018.07.021

Site spectroscopy probing of Eu3+ incorporated into novel LiYxSryZrO3+α host matrix  

Ahemen, I. (Department of Physics, University of the Free State)
Dejene, F.B. (Department of Physics, University of the Free State)
Abstract
In this work, we investigated the spectroscopic properties of $LiY_xSr_yZrO_{3+{\alpha}:Eu^{3+}$, a red emitting nanophosphor based on $SrZrO_3$ perovskite. The synthesis process was an auto-combustion process. X-ray diffractograms show the orthorhombic structure of $SrZrO_3$. Photoluminescence (PL) excitation spectra display a split charge transfer band revealing the presence of two possible sites for the $Eu^{3+}$ ions. The emission spectra at 231 nm excitation illustrate the dominance of the $^5D_0-^7F_1$ transition, which is an indication that the smaller sized $Eu^{3+}$ ions are mostly situated at the more ordered (symmetric) $Sr^{2+}$ sites. The emission spectra at 292 nm & 397 nm excitations show the dominance of $^5D_0-^7F_2$ transition which suggests some of the $Eu^{3+}$ ions are also situated at the distorted $Zr^{4+}$ sites. Both the intensity parameters, asymmetry ratio and the decay lifetimes of the nanophosphors show dependence on $Y^{3+}$ concentration, signifying a modification in the host structure. Maximum quantum efficiency value of ${\approx}46%$ was obtained for the nanophosphors which indicate the need for improvement for practical applications. CIE coordinates show the suitability of this phosphor for both red emission in LED and as a complementary colour for white LED applications.
Keywords
Spectroscopy; Perovskite; Photoluminescence; Quantum efficiency; Nanophosphors;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. Zhang, M. Lü, S. Wang, G. Zhou, S. Wang, Y. Zhou, Novel photoluminescence of SrZrO3nanocrystals synthesized through a facile combustion method, J. Alloys Compd. 433 (2007) 7-11, https://doi.org/10.1016/j.jallcom.2006.06.083.   DOI
2 Sheetal, V.B. Taxak, R. Arora, Dayawati, S.P. Khatkar, Synthesis, structural and optical properties of SrZrO3:Eu3+phosphor, J. Rare Earths 32 (2014) 293-297, https://doi.org/10.1016/S1002-0721(14)60070-3.   DOI
3 D.-H. Kim, Y.-S. Lee, Formation of the mid-gap state in SrZrO3 nanocrystals by Euion doping and its possible relation to the visible emission, J. Kor. Phys. Soc. 61 (2012) 785-790, https://doi.org/10.3938/jkps.61.785.   DOI
4 V.M. Longo, L.S. Cavalcante, R. Erlo, V.R. Mastelaro, A.T. de Figueiredo, J.R. Sambrano, et al., Strong violet-blue light photoluminescence emission at room temperature in SrZrO3: joint experimental and theoretical study, Acta Mater. 56 (2008) 2191-2202, https://doi.org/10.1016/j.actamat.2007.12.059.   DOI
5 T. Osaka, C. Numako, K. Koto, Local structure and thermal study of ytterbiumdoped SrZrO3, Mater. Res. Bull. 34 (1999) 11-24, https://doi.org/10.1016/S0025-5408(98)00209-8.   DOI
6 Y. Okuyama, K. Isa, Y.S. Lee, T. Sakai, H. Matsumoto, Incorporation and conduction of proton in SrCe0.9 - XZrxY0.1O3 - ${\delta}$, Solid State Ionics 275 (2015) 35-38, https://doi.org/10.1016/j.ssi.2015.01.010.   DOI
7 N. Suriyayothin, N.G. Eror, Solubility limit of La in SrZrO3, J. Mater. Sci. 19 (1984) 2775-2780, https://doi.org/10.1007/BF01026953.   DOI
8 T. Schober, Water vapor solubility and impedance of the high temperature proton conductor SrZr0.9Y0.1O2.95, Solid State Ionics 145 (2001) 319-324, https://doi. org/10.1016/S0167-2738(01)00926-2.   DOI
9 I. Ahemen, F.B. Dejene, R.E. Kroon, H.C. Swart, Effect of europium ion concentration on the structural and photoluminescence properties of novel Li 2 BaZrO 4: Eu 3+ nanocrystals, Opt. Mater. (Amst). 74 (2017) 58-66, https://doi.org/10. 1016/j.optmat.2017.03.029.   DOI
10 G. Xing, N. Mathews, S. Sun, S.S. Lim, Y.M. Lam, M. Gratzel, et al., Long-range balanced electron-and hole-transport lengths in organic-inorganic CH3NH3PbI3, Science (80-. ) 342 (2013) 344-347, https://doi.org/10.1126/science.1243167.   DOI
11 N. Pathak, S.K. Gupta, P.S. Ghosh, A. Arya, V. Natarajan, R.M. Kadam, Probing local site environments and distribution of manganese in $SrZrO_3$:Mn; PL and EPR spectroscopy complimented by DFT calculations, RSC Adv. 5 (2015) 17501-17513, https://doi.org/10.1039/C4RA15141K.   DOI
12 I. Ahemen, O. Meludu, F.B. Dejene, B. Viana, Site spectroscopy of Eu3+ doped- ZnS nanocrystals embedded in sodium carboxymethyl cellulose matrix, Opt. Mater. (Amst). 61 (2016) 82-91, https://doi.org/10.1016/j.optmat.2016.07.036.   DOI
13 R. Shukla, S.K. Gupta, V. Grover, V. Natarajan, A.K. Tyagi, The role of reaction conditions in the polymorphic control of $Eu^{3+}$ doped $YInO_3$: structure and size sensitive luminescence, Dalton Trans. 44 (2015) 10628-10635, https://doi.org/10.1039/C4DT02717E.   DOI
14 S.K. Gupta, B. Atomic, N. Pathak, Atomic, an efficient Gel-combustion synthesis of visible light emitting barium zirconate perovskite nanoceramics: probing the photoluminescence of Sm3 + and Eu3 + doped, J. Lumin. 169 (2015) 106-114, https://doi.org/10.1016/j.jlumin.2015.08.032.
15 S. Das, S. Som, C.Y. Yang, S. Chavhan, C.H. Lu, Structural evaluations and temperature dependent photoluminescence characterizations of Eu 3+ -activated SrZrO 3 hollow spheres for luminescence thermometry applications, Sci. Rep. 6 (2016) 1-13, https://doi.org/10.1038/srep25787.   DOI
16 S.K. Gupta, P.S. Ghosh, A.K. Yadav, N. Pathak, A. Arya, S.N. Jha, et al., Luminescence properties of $SrZrO_3$/$Tb^{3+}$ perovskite: host-dopant energy-transfer dynamics and local structure of $Tb^{3+}$, Inorg. Chem. 55 (2016) 1728-1740, https://doi.org/10.1021/acs.inorgchem.5b02639.   DOI
17 A. Manikandan, N.C.S. Selvam, L.J. Kennedy, R.T. Kumar, J.J. Vijaya, Structural and optical properties of novel ZrO2nanostructures by microwave and solution combustion method, J. Nanosci. Nanotechnol. 13 (2013) 2595-2603, https://doi.org/10.1166/jnn.2013.7357.   DOI
18 P. Kubelka, New contributions to the optics of intensely light-scattering materials. part I, J. Opt. Soc. Am. 38 (1948) 448-457, https://doi.org/10.1364/JOSA.38. 000448.   DOI
19 S. Som, S.K. Sharma, Eu 3 +/Tb3 + -codoped Y2O3 Nanophosphors: Rietveld Refinement , Bandgap and Photoluminescence Optimization, 415102 (n.d.). doi:10.1088/0022-3727/45/41/415102.   DOI
20 L.S. Cavalcante, A.Z. Simões, J.C. Sczancoski, V.M. Longo, R. Erlo, M.T. Escote, et al., SrZrO3powders obtained by chemical method: synthesis, characterization and optical absorption behaviour, Solid State Sci. 9 (2007) 1020-1027, https://doi. org/10.1016/j.solidstatesciences.2007.07.019.   DOI
21 J. Huang, L. Zhou, Z. Wang, Y. Lan, Z. Tong, F. Gong, et al., Photoluminescence Properties of SrZrO 3: Eu 3 + and BaZrO 3: Eu 3 + Phosphors with Perovskite Structure vol. 487, (2009), pp. 10-12, https://doi.org/10.1016/j.jallcom.2009.07. 153.   DOI
22 S.K. Gupta, V. Natarajan, Synthesis, Characterization and Photoluminescence Spectroscopy of Lanthanide Ion Doped Oxide Materials, BARC Newslatter, 2015, pp. 14-21.
23 K. Munirathnam, G.R. Dillip, B.D.P. Raju, S.W. Joo, S.J. Dhoble, B.M. Nagabhushana, et al., Synthesis , photoluminescence and Judd - Ofelt parameters of LiNa3P2O7: Eu3 + orthorhombic microstructures, Appl. Phys. A. 120 (2015) 1615-1623, https://doi.org/10.1007/s00339-015-9371-1.   DOI
24 R. Saraf, C.S.N. Dhananjaya, Photoluminescence properties of Eu 3 + -activated CaMoO 4 phosphors for WLEDs applications and its Judd - Ofelt analysis, J. Mater. Sci. 50 (2015) 287-298, https://doi.org/10.1007/s10853-014-8587-3.   DOI
25 S.K. Gupta, M. Mohapatra, V. Natarajan, S.V. Godbole, Site-specific luminescence of Eu3+in gel-combustion-derived strontium zirconate perovskite nanophosphors, J. Mater. Sci. 47 (2012) 3504-3515, https://doi.org/10.1007/s10853-011-6195-z.   DOI
26 Y.S. Vidya, K.S. Anantharaju, H. Nagabhushana, S.C. Sharma, H.P. Nagaswarupa, S.C. Prashantha, et al., Combustion synthesized tetragonal ZrO2: Eu3+ nanophosphors: structural and photoluminescence studies, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 135 (2015) 241-251, https://doi.org/10.1016/j.saa.2014.06. 151.   DOI
27 X. Zhang, L. Zhou, Q. Pang, M. Gong, Synthesis, photoluminescence and Judd-Ofelt analysis of red $LiGd_5P_2O_{13}:Eu^{3+}$ phosphors for white LEDs, RSC Adv. 5 (2015) 54622-54628, https://doi.org/10.1039/C5RA06680H.   DOI
28 V.A. Online, I.E. Kolesnikov, A.V. Povolotskiy, D.V. Mamonova, A.A. Manshina, M.D. Mikhailov, RSC Advances Yttrium Oxide Nanoparticles: Defect Vs . Normal Sites, (2016), pp. 76533-76541, https://doi.org/10.1039/C6RA16814K.
29 V. Dimitrov, S. Sakka, Linear and nonlinear optical properties of simple oxides. II, J. Appl. Phys. 79 (1996) 1741, https://doi.org/10.1063/1.360963.   DOI
30 J.C. Batista, P.C. de Sousa Filho, O.A. Serra, Effect of the vanadium(v) concentration on the spectroscopic properties of nanosized europium-doped yttrium phosphates, Dalton Trans. 41 (2012) 6310, https://doi.org/10.1039/c2dt30380a.   DOI
31 K. Binnemans, C. Gorller-Walrand, Application of Eu3+ ion for site symmetry determination, J. Rare Earths 14 (1996) 173-180.
32 K. Binnemans, Interpretation of europium(III) spectra, Coord. Chem. Rev. 295 (2015) 1-45, https://doi.org/10.1016/j.ccr.2015.02.015.   DOI
33 M. Ferhi, C. Bouzidi, K. Horchani-Naifer, H. Elhouichet, M. Ferid, Judd-Ofelt analysis of spectroscopic properties of Eu3+ doped KLa(PO3)4, J. Lumin. 157 (2015) 21-27, https://doi.org/10.1016/j.jlumin.2014.08.017.   DOI
34 Z. Gao, N. Xue, J.H. Jeong, R. Yu, Spectroscopic properties of a novel garnet-type tellurate orange-red emitting Li3Gd3Te2O12:Sm3+ phosphor, J. Mater. Sci. Mater. Electron. 28 (2017) 12640-12645, https://doi.org/10.1007/s10854-017-7088-y.   DOI
35 S. Gopi, S.K. Jose, A. George, N.V. Unnikrishnan, C. Joseph, P.R. Biju, Luminescence and phonon sideband analysis of Eu3+doped alkali fluoroborate glasses for red emission applications, J. Mater. Sci. Mater. Electron. 29 (2018) 674-682, https://doi.org/10.1007/s10854-017-7961-8.   DOI