Browse > Article
http://dx.doi.org/10.1016/j.cap.2018.07.005

Quenched Fano effect due to one Majorana zero mode coupled to the Fano interferometer  

Wang, Qi (College of Sciences, Northeastern University)
Zhu, Yu-Lian (College of Sciences, Northeastern University)
Abstract
We investigate the change of the Fano effect by considering one Majorana zero mode to couple laterally to the single-dot Fano interferometer. It is found that the Majorana zero mode quenches the Fano effect thoroughly and causes the conductance to be independent of the dot level, the dot-lead coupling, and the increase of the Majorana-dot coupling. As a result, the linear conductance becomes only related to the interlead coupling and the magnetic-flux phase factor. These results can be helpful for the detection of Majorana zero mode.
Keywords
Fano interferometer; Majorana zero mode; Quantum transport;
Citations & Related Records
연도 인용수 순위
  • Reference
1 B. H.Wu, X. Chen, C. R. Wang, and W. J. Gong, Chin. Phys. Lett. 31, 037306 (2014).
2 K. Kobayashi, H. Aikawa, S. Katsumoto, Y. Iye, Phys. Rev. B 68, 235304 (2003)   DOI
3 U. Fano, Phys. Rev. 124 (1961) 1866.   DOI
4 J.H. Wu, J.Y. Gao, J.H. Xu, L. Silvestri, M. Artoni, G.C. La Rocca, F. Bassani, Phys. Rev. Lett. 95 (2005) 057401.   DOI
5 O. Ujsaghy, J. Kroha, L. Szunyogh, A. Zawadowski, Phys. Rev. Lett. 85 (2000) 2557.   DOI
6 I.G. Zacharia, D. Goldhaber-Gordon, G. Granger, M.A. Kastner, Y.B. Khavin, H. Shtrikman, D. Mahalu, U. Meirav, Phys. Rev. B 64 (2001) 155311.   DOI
7 W.J. Gong, X.Y. Sui, Y. Wang, G.D. Yu, X.H. Chen, Nanoscale Res. Lett. 8 (2013) 330.   DOI
8 A.E. Miroshnichenko, S. Flach, Y.S. Kivshar, Rev. Mod. Phys. 82 (2010) 2257.   DOI
9 J. Gores, D. Goldhaber-Gordon, S. Heemeyer, M.A. Kastner, Phys. Rev. B 62 (2000) 2188.
10 K. Kobayashi, H. Aikawa, S. Katsumoto, Y. Iye, Phys. Rev. Lett. 88 (2002) 256806
11 K. Kang, S.Y. Cho, J. Phys. Condens. Matter 16 (2004) 117.   DOI
12 Z.-M. Bai, M.-F. Yang, Y.-C. Chen, J. Phys. Condens. Matter 16 (2004) 4303.   DOI
13 H. Lu, R. Lu, B.F. Zhu, Phys. Rev. B 71 (2005) 235320.   DOI
14 B.R. Buika, P. Stefanski, Phys. Rev. Lett. 86 (2001) 5128.   DOI
15 W. Zhang, A.O. Govorov, G.W. Bryant, Phys. Rev. Lett. 97 (2006) 146804.   DOI
16 M.L. Ladron de Guevara, F. Claro, P.A. Orellana, Phys. Rev. B 67 (2003) 195335.   DOI
17 W. Gong, Y. Zheng, Y. Liu, F.N. Kariuki, T. Lu, Phys. Lett. A 372 (2008) 2934.   DOI
18 W. Hofstetter, J. Konig, H. Schoeller, Phys. Rev. Lett. 87 (2001) 156803.   DOI
19 G.H. Ding, C.K. Kim, K. Nahm, Phys. Rev. B 71 (2005) 205313.   DOI
20 A.A. Clerk, X. Waintal, P.W. Brouwer, Phys. Rev. Lett. 86 (2001) 4636.   DOI
21 D. Sanchez, L. Serra, Phys. Rev. B 74 (2006) 153313   DOI
22 W. Gong, Y. Zheng, Physica E 41 (2009) 574   DOI
23 K.T. Law, P.A. Lee, T.K. Ng, Phys. Rev. Lett. 103 (2009) 237001.   DOI
24 R.M. Lutchyn, J.D. Sau, S. Das Sarma, Phys. Rev. Lett. 105 (2010) 077001.   DOI
25 Y. Oreg, G. Refael, F. von Oppen, Phys. Rev. Lett. 105 (2010) 177002.   DOI
26 B.H. Wu, J.C. Cao, Phys. Rev. B 85 (2012) 085415.   DOI
27 C.J. Bolech, E. Demler, Phys. Rev. Lett. 98 (2007) 237002.   DOI
28 J. Nilsson, A.R. Akhmerov, C.W.J. Beenakker, Phys. Rev. Lett. 101 (2008) 120403.   DOI
29 L. Fu, C.L. Kane, Phys. Rev. B 79 (2009) 161408.   DOI
30 W.J. Gong, B.H. Wu, S.F. Zhang, Y.S. Zheng, Europhys. Lett. 106 (2014) 30003   DOI
31 A.Y. Kitaev, Phys. Usp. 44 (2001) 131.   DOI
32 D.E. Liu, H.U. Baranger, Phys. Rev. B 84 (2011) 201308(R).   DOI
33 W.J. Gong, Y. Zhao, Z. Gao, Curr. Appl. Phys. 15 (2015) 520.   DOI
34 M. Lee, J.S. Lim, R. Lopez, Phys. Rev. B 87 (2013) 241402(R).   DOI
35 Z. Gao, W.J. Gong, Phys. Rev. B 94 (2016) 104506.   DOI
36 B. Zocher, B. Rosenow, Phys. Rev. Lett. 111 (2013) 036802.   DOI
37 M. Sato, H. Aikawa, K. Kobayashi, S. Katsumoto,and Y. Iye, Phys. Rev. Lett. 95, 066801 (2005)   DOI
38 K. Kobayashi, H. Aikawa, A. Sano, S. Katsumoto, and Y. Iye, Phys. Rev. B 70, 035319 (2003).
39 M. P. Nowak, B. Szafran, and F.M. Peeters Phys. Rev. B 84, 235319 (2011).
40 H. Wu, Y. Han, Y. Wang, W. J. Gong, Physica B 419, 57(2013).