Browse > Article
http://dx.doi.org/10.3938/jkps.73.1295

Numerical Study of the Magnetohydrodynamic Heat Transfer Peristaltic Flow in Tube Against High Reynolds Number  

Hamid, A.H. (Department of Mathematics and Statistics, International Islamic University)
Javed, Tariq (Department of Mathematics and Statistics, International Islamic University)
Ali, N. (Department of Mathematics and Statistics, International Islamic University)
Abstract
In the present investigation, we have studied the magnetohydrodynamic (MHD) heat transfer of peristaltic flow in a tube. The analysis is made without imposing any assumption to obtain the streamline and isothermal line directly. Galerkin's finite element method has been used on the governing Navier-Stoke's equation in the form of ${\psi}-{\omega}$. The graphs of the computed longitudinal velocity, temperature and pressure are plotted against different value of the emerging parameter by using the stream function and vorticity. The results are valid beyond the long wavelength and the low Reynolds number limits. We conclude that higher values of the parameters are not independent of the time mean flow rate.
Keywords
Finite element method; Heat transfer; Axisymmetric flow; MHD;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T. W. Latham, Fluid motion in a peristaltic pump, Master thesis, MIT, Massachusetts, 1966.
2 M. Y. Jaffrin, A. H. Shapiro and S. L. Weinberg, J. Fluid Mech. 37, 799 (1969).   DOI
3 Y. C. Fung and C. S. Yih, Trans. ASMA E. J. Appl. Mech. 35, 699 (1968).
4 H. S. Lew, Y. C. Fung and C. B. Lowenstein, J. Bio. Mach. 4, 297 (1971).
5 M. Y. Jaffrin, Int. J. Eng. Sci. 11, 681 (1973).   DOI
6 M. Kothandapani and J. Prakash, Appl. Nano sce. 6, 323 (2016).   DOI
7 M. Kothandapani and S. Srinivas, Int. Commun. Heat Mass Transfer 35, 514 (2008).   DOI
8 E. Abo-Eldahab, E. Barakat and Kh. Nowar, Math. Probl. Eng. 2012, 23 (2012).
9 N. Ali, M. Sajid, T. Javed and Z. Abbas, Int. J. Heat Mass Transfer 53, 3319 (2010).   DOI
10 J. Prakash, A. Sharma and D. Trapathi, J. Mol. Liq. 249, 843 (2018).   DOI
11 J. Prakash and D. Trapathi, J. Mol. Liq. 256, 352 (2018).   DOI
12 S. Takabatake and K. Ayukawa, J. Fluid Mech. 122, 439 (1982).   DOI
13 M. Kothandapani and J. Prakash, J. Mech. Med. Biol. (2015), DOI: 1550030.
14 M. Kothandapani and J. Prakash, Asia-Pac. J. Chem. Eng. 10, 259 (2015).   DOI
15 S. L. Weinberg, E. C. Eckstein and A. H. Shapiro, J. Fluid Mech. 49, 461(1971).   DOI
16 S. Takabatake, K. Ayukawa and A. Mori, J. Fluid Mech. 193, 267 (1988).   DOI
17 S. Takabatake, K. Ayukawa and M. Sawa, Jpn. Soc. of Mech. Eng. 53, 1207 (1990).
18 S. Takabatake, K. Ayukawa and M. Sawa, Jpn. Soc. of Mech. Eng. 56, 3633 (1990).
19 B. V. R. Kumar and K. B. Naidu, Comp. & Fluid. 24, 161(1995).   DOI
20 T. Javed, A. H. Hamid, B. Ahmed and N. Ali, J. Korean Phys Soc. 71, 950 (2017).   DOI
21 A. H. Hamid, T. Javed, B. Ahmed and N. Ali, J. Braz. Soc. Mech. Sci. Eng. DOI: 10.1007/s40430-017-0810-0.
22 J. Prakasha, K. Rameshb, Dharmendra Tripathic and R. Kumar, Microvasc. Res. 118, 162 (2018).   DOI
23 K. Vajravelu, G. Radhakrishnamacharya and V. Rad-hakrishnamurty, Int. J. Nonlin. Mech. 42, 754 (2007).   DOI
24 Kh. S. Mekheimer and Y. Abd Elmaboud, Phys. Lett. A 372, 1657 (2008).   DOI
25 S. Srinivas and M. Kothandapani, Appl. Math. Comp. 213, 197 (2009).   DOI
26 D. Tripathi and O. A. Beg, Math. Comp. Modeling 57, 1270 (2013).   DOI