Browse > Article
http://dx.doi.org/10.3938/jkps.73.1012

Development of Tissue Equivalent Materials for a Multi-modality (CT&MRI) Phantom in MRI-guided Radiation Treatment  

Seol, Yunji (Department of Biomedicine & Health Sciences, The Catholic University of Korea)
Kim, Jina (Department of Biomedicine & Health Sciences, The Catholic University of Korea)
Kim, Aeran (Department of Biomedicine & Health Sciences, The Catholic University of Korea)
Hwang, Jinho (Department of Biomedicine & Health Sciences, The Catholic University of Korea)
Oh, Taegeon (Department of Biomedicine & Health Sciences, The Catholic University of Korea)
Shin, Jin-sol (Department of Biomedicine & Health Sciences, The Catholic University of Korea)
Jang, Hong Seok (Department of Radiation Oncology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea)
Choi, Byung Ock (Department of Radiation Oncology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea)
Kang, Young-nam (Department of Radiation Oncology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea)
Abstract
This study proposed to develop a phantom material that can represent the various contrasts of both MRI and CT images and is available to use in MRI-guided radiation treatment. Materials used for making a phantom that can be used for both MRI and CT image were agarose (T2 modifier), gadolinium-based contrast agent (T1 modifier), sodium fluoride (CT number modifier), and distilled water. They were mixed at various composition ratios and stirred until transparent. For the relationship between the ingredients and values, 48 samples were manufactured at various composition ratios. The relationship was expressed as equations, to be able to get the composition ratios of organs that we wanted to make. MR relaxation times were measured using 1.5 T MRI equipment. CT scans were performed at 120 kVp and extracted CT numbers from images. Based on the fitted equations derived from the relationship between ingredients and values, materials were manufactured using the composition ratio of human organs; brain (white and gray matter), liver, spleen, kidney, and prostate. The all values were within the reference range, but some exceeded the range due to the image noise. A phantom composed of substitutes made from the derived equations added other substances of different density like bone or lung can be used as an inhomogeneity dose calculation phantom for both CT and MRI. Furthermore, it can be applied to MRI-only based RTP systems and MRI-guided radiation treatment QA in the future.
Keywords
MRI-CT phantom; Tissue equivalent phantom; Inhomogeneity dose calculation phantom; MRI-based radiation treatment planning;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. Kato, M. Kuroda, K. Yoshimura, A. Yoshida, K. Hanamoto, S. Kawasaki, K. Shibuya and S. Kanazawa, Medical physics 32, 3199 (2005).   DOI
2 G. G. McDonald and J. S. Leigh Jr., Journal of Magnetic Resonance 9, 358 (1973).
3 P. S. Tofts, in Proc. Int. Soc. Magn. Reson. Med. (2009), p. 1.
4 G. J. Stanisz, E. E. Odrobina, J. Pun, M. Escaravage, S. J. Graham, M. J. Bronskill and R. M. Henkelman, Magnetic resonance in medicine 54, 507 (2005).   DOI
5 C. M. de Bazelaire, G. D. Duhamel, N. M. Rofsky and D. C. Alsop, Radiology 230, 652 (2004).   DOI
6 M. A. Weinstein, P. M. Duchesneau and W. J. MacIntyre, Radiology 122, 699 (1977).   DOI
7 J. Piekarski, H. I. Goldberg, S. A. Royal, L. Axel and A. A. Moss, Radiology 137, 727 (1980).   DOI
8 H. Lepor, Prostatic diseases (W. B. Saunders Co., Philadelphia, 2000).
9 R. R. Gallas, N. Hunemohr, A. Runz, N. I. Niebuhr, O. Jakel and S. Greilich, Zeitschrift fur medizinische Physik 25, 391 (2015).   DOI
10 R. Prabhakar, P. K. Julka, T. Ganesh, A. Munshi, R. C. Joshi and G. K. Rath, Japanese journal of clinical oncology 37, 405 (2007).   DOI
11 J. Uh, T. E. Merchant, Y. Li, X. Li and C. Hua, Medical physics 41, 051711 (2014).   DOI
12 D. R. White, J. Booz, R. V. Griffith, J. J. Spokas and I. J. Wilson, Journal of the International Commission on Radiation Units and Measurements os23, NP (1989).
13 K. M. Kraus, O. Jakel, N. I. Niebuhr and A. Pfaffenberger, Physics in medicine and biology 62, 1358 (2017).   DOI
14 B. W. Raaymakers, J. J. Lagendijk, J. Overweg, J. G. Kok, A. J. Raaijmakers, E. M. Kerkhof, R. W. van der Put, I. Meijsing, S. P. Crijns, F. Benedosso, M. van Vulpen, C. H. de Graaff, J. Allen and K. J. Brown, Physics in medicine and biology 54, N229 (2009).   DOI
15 J. J. Lagendijk, B. W. Raaymakers and M. van Vulpen, Seminars in radiation oncology 24, 207 (2014).   DOI
16 N. I. Niebuhr, W. Johnen, T. Guldaglar, A. Runz, G. Echner, P. Mann, C. Mohler, A. Pfaffenberger, O. Jakel and S. Greilich, Medical physics 43, 908 (2016).   DOI
17 K. Hattori, Y. Ikemoto, W. Takao, S. Ohno, T. Harimoto, S. Kanazawa, M. Oita, K. Shibuya, M. Kuroda and H. Kato, Medical physics 40, 032303 (2013).   DOI
18 S. W. Kim, H. J. Shin, J. H. Hwang, J. S. Shin, S. K. Park, J. Y. Kim, K. J. Kim, C. S. Kay and Y. N. Kang, PloS one 12, e0185082 (2017).   DOI
19 J. A. Dowling, J. Lambert, J. Parker, O. Salvado, J. Fripp, A. Capp, C. Wratten, J. W. Denham and P. B. Greer, International journal of radiation oncology, biology, physics 83, e5 (2012).   DOI
20 S. Patz, R. J. Bert, E. Frederick and T. F. Freddo, Journal of magnetic resonance imaging : JMRI 26, 510 (2007).   DOI