Browse > Article
http://dx.doi.org/10.3938/jkps.73.1535

Preparation of a Li7La3Zr1.5Nb0.5O12 Garnet Solid Electrolyte Ceramic by using Sol-gel Powder Synthesis and Hot Pressing and Its Characterization  

Lee, Hee Chul (Department of Advanced Materials Engineering, Korea Polytechnic University)
Oh, Nu Ri (Department of Advanced Materials Engineering, Korea Polytechnic University)
Yoo, Ae Ri (Department of Advanced Materials Engineering, Korea Polytechnic University)
Kim, Yunsung (Department of Mechanical Engineering, University of Michigan)
Sakamoto, Jeff (Department of Mechanical Engineering, University of Michigan)
Abstract
In this study, we prepared and characterized Nb-doped $Li_7La_3Zr_{2-x}O_{12}$ (LLZNO) powder and pellets with a cubic garnet structure by using a modified sol-gel synthesis and hot pressing. LLZNO powder with a very small grain size and cubic structure without secondary phases could be obtained by using a synthesis method in which Li and La sources in a propanol solvent were mixed together with Zr and Nb sources in 2-methoxy ethanol. A pure cubic phase LLZNO pellet could be fabricated from the prepared LLZNO and an additional 6-wt% of $Li_2CO_3$ powder by hot pressing at $1050^{\circ}C$ and 15.8 MPa. The hot-pressed LLZNO pellet with a relative density of 99% exhibited a very dense surface morphology. The total Li ionic conductivity of the hot-pressed LLZNO was $7.4{\times}10^{-4}S/cm$ at room temperature, which is very high level compared to other reported values. The activation energy for ionic conduction was estimated to be 0.40 eV.
Keywords
LLZO; Solid electrolyte; Nb doping; Sol-gel; Hot pressing; Ionic conductivity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 I. N. David, T. Thompson, J. Wolfenstine, J. L. Allen and J. Sakamoto, J. Am. Ceram. Soc. 98, 1209 (2015).   DOI
2 Y. Kihira, S. Ohta, H. Imagawa and T. Asaoka, ECS Electrochem. Lett. 52, A56 (2013).
3 T. Thompson, J. Wolfenstine, J. L. Allen, M. Johannes, A. Huq, I. N. David and J. Sakamoto, J. Mat. Chem. A 2, 13431 (2014).   DOI
4 D. Rettenwander, C. A. Geirger and G. Amthauer, Inorg. Chem. 52, 8005 (2013).   DOI
5 Y. Li, J. T. Han, C. A. Wang, H. Xie and J. B. Goodenough, J. Mater. Chem. 22, 15357 (2012).   DOI
6 J. Awaka, N. Kijima, K. Kataoka, H. Hayakawa and J. Akimoto, J. Solid State Chem. 183, 180 (2010).   DOI
7 Y. Shimonishi, A. Toda, T. Zhang, A. Hirano, N. Imanishi, O. Yamamoto and Y. Takeda, Solid State Ionics 183, 48 (2011).   DOI
8 I. Kokal, M. Somer, P. H. L. Notten and H. T. Hintzen, Solid State Ionics 185, 42 (2011).   DOI
9 W. E. Tenhaeff, E. Rangasamy, Y. Wang, A. P. Sokolov, J. Wolfenstine, J. Sakamoto and N. J. Dudney, Chem. Electro. Chem. 1, 375 (2014).
10 N. Janani, S. Ramakumar, S. Kannan and R. Murugan, J. Am. Ceram. Soc. 98, 2039 (2015).   DOI
11 Y. Zhang, F. Chen, R. Tu, Q. Shen and L. Zhang, J. Power Sources 268, 960 (2014).   DOI
12 J. Sakamoto, E. Rangasamy, H. Kim, Y. Kim and J. Wolfenstine, Nanotechnology 24, 424005 (2013).   DOI
13 Y. Zhang, J. Cai, F. Chen, R. Tu, Q. Shen, X. Zhang and L. Zhang, J. Alloy. Compd. 644, 793 (2015).   DOI
14 J. Wolfenstine, E. Rangasamy, J. L. Allen and J. Sakamoto, J. Power Sources 208, 193 (2012).   DOI
15 H. Buschmann et al., Phys. Chem. Chem. Phys. 13, 19378 (2011).   DOI
16 K. B. Dermenci, E. Cekic and S. Turan, Int. J. Hydrogen Energy 41, 9860 (2016).   DOI
17 R. Murugan, V. Thangadurai and W. Weppner, Angew. Chem. Int. Ed. 46, 7778 (2007).   DOI
18 S. Ohta, T. Kobayashi and T. Asaoka, J. Power Sources 196, 3342 (2011).   DOI
19 M. Kotobuki, H. Munakata, K. Kanamura, Y. Sato and T. Yoshida, J. Electrochem. Soc. 157, A1076 (2010).   DOI
20 K. H. Kim, Y. Iriyama, K. Yamamoto, S. Kumazaki, T. Asaka, K. Tanabe, C. A. J. Fisher, T. Hirayama, R. Murugan and Z. Ogumi, J. Power Sources 196, 764 (2011).   DOI
21 E. Rangasamy, J. Wolfenstine and J. Sakamoto, Solid State Ionics 206, 28 (2012).   DOI
22 C. A. Geiger, E. Alekseev, B. Lazic, M. Fish, T. Armbruster, R. Langner, M. Fechtelkord, N. Kim, T. Pettke and W. Weppner, Inorg. Chem. 50, 1089 (2011).   DOI