Browse > Article
http://dx.doi.org/10.3938/jkps.73.1529

Temperature Dependent Octahedral Tilting Behaviors of Monoclinic and Tetragonal SrRuO3 Thin Films  

Lee, Sung Su (School of Materials Science and Engineering, Gwangju Institute of Science and Technology)
Seo, Okkyun (Synchrotron X-ray Station at SPring-8, Research Network and Facility Services Division, National Institute for Materials Science (NIMS))
Kim, Jaemyung (Synchrotron X-ray Station at SPring-8, Research Network and Facility Services Division, National Institute for Materials Science (NIMS))
Song, Chulho (Synchrotron X-ray Station at SPring-8, Research Network and Facility Services Division, National Institute for Materials Science (NIMS))
Hiroi, Satoshi (Synchrotron X-ray Station at SPring-8, Research Network and Facility Services Division, National Institute for Materials Science (NIMS))
Chen, Yanna (Synchrotron X-ray Station at SPring-8, Research Network and Facility Services Division, National Institute for Materials Science (NIMS))
Katsuya, Yoshio (Synchrotron X-ray Station at SPring-8, Research Network and Facility Services Division, National Institute for Materials Science (NIMS))
Sakata, Osami (Synchrotron X-ray Station at SPring-8, Research Network and Facility Services Division, National Institute for Materials Science (NIMS))
Abstract
We used in-situ synchrotron X-ray scattering to investigate phase transformations of octahedral tilted monoclinic $SrRuO_3$ (MSRO) and tetragonal SRO (TSRO) thin films on $SrTiO_3$ (STO) substrates. The octahedral tilted MSRO thin films were highly crystalline and the monoclinic distortion angle was $0.45^{\circ}$. The phase transition temperature from the MSRO to TSRO phase occurred at approximately $200^{\circ}C$ as a second order transition. Conversely, no phase transformations of the TSRO thin film occurred within the range from RT to $250^{\circ}C$. The octahedral $RuO_6$ rotation was strongly affected by the phase transformation in the SRO thin films.
Keywords
$SrRuO_3$; Octahedral tilting; $RuO_6$ rotation; Half integer peak; Phase transition;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. B. Eom, R. J. Cava, R. M. Fleming, J. M. Phillips, R. B. Van Dover, J. H. Marshall, J. W. Hsu, J. J. Krajewski and W. F. Peck, Science 258, 1766 (1992).   DOI
2 M. Gao, H. Du, C. R. Ma, M. Liu, G. Collins, Y. M. Zhang, C. Dai, C. L. Chen and Y. Lin, Appl. Phys. Lett. 103, 141901 (2013).   DOI
3 J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig and R. Ramesh, Science 299, 1719 (2003).   DOI
4 V. Shelke, D. Mazumdar, G. Srinivasan and A. Gupta, J. Appl. Phys. 109, 07D914 (2011).   DOI
5 S. S. Lee, Y-M. Kim, H-J. Lee, O. Seo, H. Y. Jeong, Q. He, A. Y. Borisevich, B. Kang, O. Kwon, S. Kang, Y. Kim, T. Y. Koo, J-S. Rhyee, D. Y. Noh, B. Cho, J. H. Seo, J. H. Lee and J. Y. Jo, Adv. Funct. Mater. 28, 1800839 (2018).   DOI
6 A. P. Mackenzie, J. W. Reiner, A. W. Tyler, L. M. Galvin, S. R. Julian, M. R. Beasley, T. H. Geballe and A. Kapitulnik, Phys. Rev. B 58, R13318 (1998).   DOI
7 D. Rubi, A. H. G. Vlooswijk and B. Noheda, Thin Solid Films 517, 1904 (2009).   DOI
8 G. Herranz, F. Sanchez, J. Fontcuberta, M. V. Garcia-Cuenca, C. Ferrater, M. Varela, T. Angelova, A. Cros and A. Cantarero, Phys. Rev. B 71, 174411 (2005).   DOI
9 S. Woo, S. A Lee, H. Mun, Y. G. Choi, C. J. Zhung, S. Shin, M. Lacotte, A. David, W. Prellier, T. Park, W. N. Kang, J. S. Lee, S. W. Kim and W. S. Choi, Nanoscale 10, 4377 (2018).   DOI
10 S. A Lee, S. Oh, J-Y. Hwang, M. Choi, C. Youn, J. W. Kim, S. H. Chang, S. Woo, J-S. Bae, S. Park, Y-M. Kim, S. Lee, T. Choi, S. W. Kim and W. S. Choi, Energy Environ. Sci. 10, 924 (2017).   DOI
11 A. Herklotz, M. Kataja, K. Nenkov, M. D. Biegalski, H. M. Christen, C. Deneke, L. Schultz and K. Dorr, Phys. Rev. B 88, 144412 (2013).   DOI
12 W. Lu, W. Song, P. Yang, J. Ding, G. M. Chow and J. Chen, Sci. Rep. 5, 10245 (2015).   DOI
13 W. Lu, W. D. Song, K. He, J. Chai, C-J. Sun, G-M. Chow and J-S. Chen, J. Appl. Phys. 113, 063901 (2013).   DOI
14 Z. Fang, N. Nagaosa, K. S. Takahashi, A. Asamitsu, R. Mathieu, T. Ogasawara, H. Yamada, M. Kawasaki, Y. Tokura and K. Terakura, Science 302, 92 (2003).   DOI
15 S. A Lee, S. Oh, J. Lee, J-Y. Hwang, J. Kim, S. Park, J-S. Bae, T. E. Hong, S. Lee, S. W. Kim, W. N. Kang and W. S. Choi, Sci. Rep. 7, 11583 (2017).   DOI
16 D. Kan and Y. Shimakawa, Cryst. GrowthDes. 11, 5483 (2011).   DOI
17 W. Lu, P. Yang, W. D. Song, G-M. Chow and J-S. Chen, Phys. Rev. B 88, 214115 (2013).   DOI
18 K. J. Choi, S. H. Baek, H. W. Jang, L. J. Belenky, M. Lyubchenko and C. B. Eom, Adv. Mater. 22, 759 (2010).   DOI
19 Q. Gan, R. A. Rao, C. B. Eom, J. L. Garrett and M. Lee, Appl. Phys. Lett. 72, 978 (1998).   DOI
20 A. M. Glazer, Acta. Cryst. A 31, 756(1975).   DOI
21 B. J. Kennedy, B. A. Hunter and J. R. Hester, Phys. Rev. B 65, 224103 (2005).
22 K. Saito, A. Ulyanenkov, V. Grossmann, H. Ress, L. Bruegemann, H. Ohta, T. Kurosawa, S. Ueki and H. Funakubo, Jpn. J. Appl. Phys. 45, 7311 (2006).   DOI
23 N. M. Olekhnovich, T. E. Zhabko, N. S. Orlova, V. D. Janovich, O. I. Pashkovskii and T. L. Zykova, Cryst. Res. Technol. 26, 747 (1991).   DOI
24 D. Kan, R. Aso, H. Kurata and Y. Shimakawa, J. Appl. Phys. 113, 173912 (2013).   DOI
25 A. M. Glazer, Acta. Cryst. B 28, 3384(1972).   DOI