Browse > Article
http://dx.doi.org/10.3938/jkps.72.1052

Improving Fire Resistance of Cotton Fabric through Layer-by-Layer Assembled Graphene Multilayer Nanocoating  

Jang, Wonjun (Department of Mechanical Engineering, Myongji University)
Chung, Il Jun (Department of Mechanical Engineering, Myongji University)
Kim, Junwoo (Department of Mechanical Engineering, Myongji University)
Seo, Seongmin (Department of Mechanical Engineering, Myongji University)
Park, Yong Tae (Department of Mechanical Engineering, Myongji University)
Choi, Kyungwho (New Transportation Systems Research Center, Korea Railroad Research Institute)
Abstract
In this study, thin films containing poly(vinyl alcohol) (PVA) and graphene nanoplatelets (GNPs), stabilized with poly(4-styrene-sulfonic acid) (PSS), were assembled by a simple and cost-effective layer-by-layer (LbL) technique in order to introduce the anti-flammability to cotton. These anti-flammable layers were characterized by using UV-vis spectrometry and quartz crystal microbalance as a function of the number of bilayers deposited. Scanning electron microscopy was used to visualize the morphology of the thin film coatings on the cotton fabric. The graphene-polymer thin films introduced anti-flammable properties through thermally stable carbonaceous layers at a high temperature. The thermal stability and flame retardant property of graphene-coated cotton was demonstrated by thermogravimetric analysis, cone calorimetry, and vertical flame test. The results indicate that LbL-assembled graphene-polymer thin films can be applied largely in the field of flame retardant.
Keywords
Flame retardant; Layer-by-layer assembly; Graphene; Fabric; Cone calorimetry;
Citations & Related Records
연도 인용수 순위
  • Reference
1 E. Lecoeur, I. Vroman, S. Bourbigot, T. M. Lam and R. Delobel, Polymer Degradation and Stability 74, 487 (2001).   DOI
2 J. Alongi, F. Carosio, A. Frache and G. Malucelli, Carbohydrate Polymers 92, 114 (2013).   DOI
3 F. Laoutid, L. Bonnaud, M. Alexandre, J-M. Lopez-Cuesta and Ph. Dubois, Materials Science and Engineering: R: Reports 63, 100 (2009).   DOI
4 H. Qin, S. Zhang, C. Zhao, G. Hu and M. Yang, Polymer 46, 8386 (2005).   DOI
5 A. Bergman et al., Environment International 49, 57 (2012).   DOI
6 M. Rakotomalala, S. Wagner and M. Doring, Materials 3, 4300 (2010).   DOI
7 P. O. Darnerud, Environment International 29, 841 (2003).   DOI
8 M. Ema, S. Fujii, M. Hirata-Koizumi and M. Matsumoto, Reproductive Toxicology 25, 335 (2008).   DOI
9 S. Kemmlein, D. Herzke and R. J. Law, J Chromatography A 1216, 320 (2009).   DOI
10 Q. L. Li, X. L. Wang, D. Y. Wang, Y. Z. Wang, X. N. Feng and G. H. Zheng, J Applied Polymer Science 122, 342 (2011).   DOI
11 H. Lu, L. Song and Y. Hu, Polymers for Advanced Technologies 22, 379 (2011).   DOI
12 H. Pan, Y. Pan, W. Wang, L. Song, Y. Hu and K. M. Liew, Industrial & Engineering Chemistry Research 53, 14315 (2014).   DOI
13 M. Sain, S. H. Park, F. Suhara and S. Law, Polymer Degradation and Stability 83, 363 (2004).   DOI
14 F. Carosio, G. Laufer, J. Alongi, G. Camino and J. C. Grunlan, Polymer Degradation and Stability 96, 745 (2011).   DOI
15 X. Ding et al., Surface and Coatings Technology 305, 184 (2016).   DOI
16 Y. S. Kim, R. Davis, A. A. Cain and J. C. Grunlan, Polymer 52, 2847 (2011).   DOI
17 Y. C. Li et al., ACS Nano 4, 3325 (2010).   DOI
18 G. Decher, Y. Lvov and J. Schmitt, Thin Solid Films 244, 772 (1994).   DOI
19 G. Laufer, F. Carosio, R. Martinez, G. Camino and J. C. Grunlan, J Colloid and Interface Science 356, 69 (2011).   DOI
20 Y. T. Park et al., Advanced Functional Materials 25, 575 (2015).   DOI
21 P. T. Hammond, Advanced Materials 16, 1271 (2004).   DOI
22 M. K. Gheith et al., Advanced Materials 18, 2975 (2006).   DOI
23 Y. T. Park, A. Y. Ham and J. C. Grunlan, J Physical Chemistry C 114, 6325 (2010).   DOI
24 Y. T. Park, A. Y. Ham and J. C. Grunlan, Journal of Materials Chemistry 21, 363 (2011).   DOI
25 Y. T. Park, A. Y. Ham, Y. H. Yang and J. C. Grunlan, RSC Advances 1, 662 (2011).   DOI
26 J. C. Grunlan, J. K. Choi and A. Lin, Biomacromolecules 6, 1149 (2005).   DOI
27 S. Y. Wong et al., Biomacromolecules 13, 719 (2012).   DOI
28 J. J Park, W. J. Hyun, S. C. Mun, Y. T. Park and O. O. Park, ACS Applied Materials & Interfaces 7, 6317 (2015).   DOI
29 M. A. Priolo, D. Gamboa, K. M. Holder and J. C. Grunlan, Nano Letters 10, 4970 (2010).   DOI
30 Y. H. Yang, M. Haile, A. Malek, Y. T Park and J. C Grunlan, Macromolecules 44, 1450 (2011).   DOI
31 M. Zhou and S. Dong, Accounts of Chemical Research 44, 1232 (2011).   DOI
32 P. T. Hammond, Materials Today 15, 196 (2012).   DOI
33 I. J. Chung et al., J Materials Chemistry A 6, 3108 (2018).   DOI
34 S. Seo, S. Lee and Y. T. Park, Review of Scientific Instruments 87, 5 (2016).
35 Y. C. Li, Y. S. Kim, J. Shields and R. Davis, J. Materials Chemistry A 1, 12987 (2013).   DOI
36 G. Laufer, C. Kirkland, A. A. Cain and J. C. Grunlan, ACS Applied Materials and Interfaces 4, 1643 (2012).   DOI
37 F. Carosio, A. Di Blasio, J. Alongi and G. Malucelli, Polymer 54, 5148 (2013).   DOI
38 Y. S. Kim, Y. C. Li, W. M. Pitts, M. Werrel and R. D. Davis, ACS Applied Materials and Interfaces 6, 2146 (2014).   DOI
39 J. C. Yang, W. Liao, S. B. Deng, Z. J. Cao and Y. Z. Wang, Carbohydrate Polymers 151, 434 (2016).   DOI