Browse > Article
http://dx.doi.org/10.3938/jkps.68.797

NOx Gas Detection Characteristics in FET-type Multi-walled Carbon Nanotube-based Gas Sensors for Various Electrode Spacings  

Kim, Hyun Soo (Department of Electrical Engineering, Gachon University)
Jang, Kyung Uk (Department of Electrical Engineering, Gachon University)
Kim, Tae Wan (Department of Information Display Engineering, Hongik University)
Abstract
In this study, we fabricated a p-channel FET-type $NO_x$ gas sensor by using multi-walled carbon nanotubes (MWCNTs). Carbon nanotubes (CNTs) have good electronic, chemical-stability, and sensitivity characteristics. In particular, gas sensors require characteristics such as high speed, selectivity, and sensitivity. The fabricated sensor was used to detect $NO_x$ gas for different values of the gate-source voltage ($V_{gs}$) and the electrode spacings (30, 60, 90, and $120{\mu}m$). The gas sensor that absorbed $NO_x$ gas molecules showed a decrease in resistance. The sensitivity of the gas sensor was increased by increasing the electrode spacing. Additionally, while changing the Vgs and the temperature inside the chamber for the MWCNT gas sensor, we obtained the sensitivity and the normalized response for detecting $NO_x$ gas. We also obtained the adsorption energy ($U_a$) by using Arrhenius plots based on the reduction of resistance due to voltage variations. The adsorption energy was found to increase with increasing applied voltage.
Keywords
MWCNT; Gas sensor; FET-type; Arrhenius plot;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. G. Kim, S. C. Kang, E. J. Shin, D. Y. Kim, J. H. Lee and Y. S. Lee, Appl. Chem. Eng. 23, 47 (2012).
2 P. S. Su and T. T. Pan, Mat. Chem. Phys. 125, 351 (2001).
3 S. H. Lee and J. S. Im, S. C. Kang and T. S. Bae, Chem. Phys. Lett. 497, 191 (2010).   DOI
4 J. G. Park and K. J. Lee, J. Kor. Inst. Met. Mater. 13, 38 (2000).
5 G. Wiegleb and J. Heitbaum, Sens. Act. B 17, 93 (1994).   DOI
6 D. E. Williams, Sens. Act. B 57, 1 (1999).   DOI
7 S. Iijima, Nature 38, 556 (1991).
8 K. Lee, J. W. Lee, K. Y. Dong and B. K. Ju, Sens. Act B: Chem. 135, 214 (2008).   DOI
9 S. M. Lee, K. H. An, Y. H. Lee, G. Seifert and T. Frauenheim, J. Am. Chem. Soc. 123, 5059 (2001).   DOI
10 S. Sharma, S. Hussain, S. Singh and S. S. Islam, Sens. Act. B: Chem. 194, 213 (2014).   DOI
11 J. Suehiro, H. Imakiire, S. Hidaka, W. Ding, G. Zhou, K. Imsaka and M. Hare, Sens. Act. B: Chem. 114, 943 (2006).   DOI
12 H. J. Yoon, D. H. Jun, J. H. Yang, Z. Zhou, S. S. Yang and M. M. C. Cheng, Sens. Act. B: Chem. 157, 310 (2011).   DOI
13 E. H. Espinosa, R. Ionescu, C. Bittencourt, A. Felten, R. Erni, G. Van Tendeloo, J. J. Pireaux and E. Llobet, Thin Solid Films 515, 8322 (2007).   DOI
14 T. Ueda, S. Katsuki, N. Heidari Abhari, T. Ikegami, F. Mitsugi and T. Nakamiya, Surf. Coat. Technol. 520, 5325 (2008).
15 H. S. Kim and K. U. Jang, J. KIEEME 26, 325 (2013).
16 J. O. Lee, Chem. Eng. Mater. 12, 13 (2009).
17 H. S. Kim, S. H. Lee and K. U. Jang, J. KIEEME 26, 707 (2013).
18 B. A. Albiss, W. A. Safhaneh, I. Jumah and I. M. Obaidat, Sens. J. IEEE. 10, 1807 (2010).   DOI
19 E. Ahn, H. Jung, N. L. Hung, D. Oh, H. Kim, and D. Kim, Kor. J. Mater. Res. 19, 11 (2009).
20 H. S. Kim and K. U. Jang, J. KIEEME 27, 668 (2014).
21 M. K. Kwon and Y. T. Hong, J. KIEEME 22, 38 (2009).
22 A. Abdellah, A. Abdelhalim, F. Loghin, P. Kohler, Z. Ahmad, G. Scarpa and P. Lugli, Sens. J. IEEE. 13, 4014 (2013).   DOI
23 W. J. Lee, M. K. Choi and K. U. Jang, J. KSDIT 11, 55 (2012).
24 A. Afzal, N. Cioffi, L. Sabbatini and L. Torsi, Sens Act. B 171, 25 (2012).
25 H. S. Kim, Y. S. Park and K. U. Jang J. KIEEME 26, 257 (2014).