Browse > Article
http://dx.doi.org/10.3938/jkps.64.958

Development of Thin Gaseous Ionization Detectors for Measurements of High-energy Hadron Beams  

Lee, Kyong Sei (Korea University)
Hong, Byungsik (Korea University)
Lee, Kisoo (Korea University)
Park, Sung Keun (Korea University)
Yu, Jaehee (Korea University)
Kim, Sang Yeol (Notice Korea)
Abstract
Thin gaseous ionization detectors have been developed based on a current-integration mode for measurements of high-energy hadron beams. In the present detector R&D, two different types of prototype detectors with an active area of $16{\times}16cm^2$, each equipped with 256-signal processing channels, were manufactured and tested with 43-MeV protons provided by the MC50 proton cyclotron at the Korea Institute of Radiological and Medical Science (KIRAMS). The first one was equipped with a single gas electron multiplier (GEM), and the second one was a thin-plane ionization detector without the GEM foil loaded. The linearities of the detector responses for both detectors were examined for various proton-beam intensities. The quantitative accuracies for the channel-response data and for the total detector responses measured for 43-MeV protons were 0.4% and 0.34%, respectively. We conclude from the beam test that operating both types of detectors in the current-integration mode will allow quality measurements of dynamic-mode hadron beams to be performed with accuracies of better than 1%.
Keywords
Gas electron multiplier; Gaseous ionization detector; Hadron beam; Beam monitor; Dose-verification measurement;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 S. Lee, B. Hong, K. S. Lee, B. Mulilo and S. K. Park, Nucl. Instr. Meth. A 724, 6 (2013).   DOI   ScienceOn
2 C. Kim et al., J. Korean Phys. Soc. 60, 725 (2012).   DOI   ScienceOn
3 K. S. Lee et al., J. Korean Phys. Soc. 59, 2002 (2011).   DOI   ScienceOn
4 T. Bortfeld, Phys. Med. Biol. 51, R363 (2006).   DOI   ScienceOn
5 M. Kramer, O. Haberer, G. Kraft, D. Schardt and U. Weber, Phys. Med. Biol. 45, 3299 (2000).   DOI   ScienceOn
6 B. Schaffner, E. Pedroni and A. Lomax, Phys. Med. Biol. 44, 27 (1999).   DOI   ScienceOn
7 T. Inaniwa, T. Furukawa, S. Sato, T. Tomitani, M. Kobayashi, S. Minohara, K. Noda and T. Kanai, Nucl. Instr. Meth. B 266, 2194 (2007).
8 Y. Futami, T. Kanai, M. Fujita, H. Tomura, A. Higashi, N. Matsufuji, N. Miyahara, M. Endo and K. Kawachi, Nucl. Instr. Meth. A 430, 143 (1999).   DOI   ScienceOn
9 S. Duarte Pinto, M. Villa, M. Alfonsi, I. Brock, G. Croci, E. David, R. de Oliveira, L. Ropelewski and M. van Stenis, J. Inst. P12009 (2009).
10 V. Anferov, Nucl. Instr. Meth. Phys. A 496, 222 (2003).   DOI   ScienceOn
11 S. Bachmann, A. Bressan, S. Kappler, B. Ketzer, M. Deutel, L. Ropelewski, F. Sauli and E. Schulte, CERNOPEN-2000-299 (2000).
12 M. Capeans, B. Ketzer, A. Placci, L. Ropelewski, F. Sauli and M. van Stenis, CERN-EP/TA1-CH-1211 (2000).
13 T. Ferbel, Experimental Techniques in High Energy Physics (Addison-Wesley, New York, 1987).
14 B. S. Moon, B. Hong, J. Jang, M. S. Jeong, M. Jo, E. A. Ju, K. S. Lee, S. Park and K. S. Sim, J. Korean Phys. Soc. 56, 1088 (2010).   DOI   ScienceOn
15 P. Abbon et al., Nucl. Instr. Meth. A 577, 455 (2007).   DOI   ScienceOn