Browse > Article

Piezoelectric Properties of PMS-PZT with $Bi_2O_3$ and $CeO_2$ for a Rosen-Type Transformer  

Joo, H.K. (Energy-Conversion Device Research Center, Korea Electrotechnology Research Institute)
Kim, I.S. (Energy-Conversion Device Research Center, Korea Electrotechnology Research Institute)
Song, J.S. (Energy-Conversion Device Research Center, Korea Electrotechnology Research Institute)
Jeong, S.J. (Energy-Conversion Device Research Center, Korea Electrotechnology Research Institute)
Kim, M.S. (Energy-Conversion Device Research Center, Korea Electrotechnology Research Institute)
Jeon, S.H. (Energy-Conversion Device Research Center, Korea Electrotechnology Research Institute)
Abstract
Recently, piezoelectric transformers have been applied to many fields. Multi layer piezoelectric transformers have the advantage of high step up ratio, high electromechanical coupling coefficient ($K_p$) and high mechanical quality factor ($Q_m$), but they are subject to the peeling phenomenon and the need for an increased sintering temperature made the price of costly electrodes. Thus, in this study, we discuss a method to fabricate of high-power Rosen-type piezoelectric transformers. The high-power Rosen-type piezoelectric transformers were synthesized using 0.05Pb($Mn_{1/3}Sb_{2/3}$)$O_3$-$0.48PbZrO_3$-$0.47PbTiO_3$ (abbreviated as PMS-PZT) ceramics. The density, the microstructure and the dielectric and piezoelectric properties as functions of the sintering temperature were investigated and an addition of $Bi_2O_3$ and $CeO_2$ resulted in a significant improvement in the piezoelectric properties. The results indicated that the following optimal properties of ceramics were obtained at a sintering temperature of 1200 $^{\circ}C$: $\varepsilon_r$ = 880, $tan{\delta}$= 0.0075, $K_p$ = 0.57, $Q_m$ = 1124 and $d_{33}$ = 304 pC/N.
Keywords
Piezoelectric transformer; PMS-PZT; Rosen type;
Citations & Related Records

Times Cited By Web Of Science : 6  (Related Records In Web of Science)
Times Cited By SCOPUS : 6
연도 인용수 순위
1 C. A. Rosen, Proc. Electron. 1, 205 (1957)
2 H. M. Kim, J. S. Ahn, K. H. Lee and K. B. Lee, J. Korean Phys. Soc. 50, 1740 (2007)   DOI   ScienceOn
3 K. Ishii, N. Akimoto and S. Tashirio, Jpn. J. Appl. Phys. 37, 5330 (1998)   DOI
4 J. Hu, Y. Fuda, M. Katsuno and T. Yoshida, Jpn. J. Appl. Phys. 38, 3208 (1999)   DOI
5 Y. D. Hou, M. K. Zhu, B. Wang, H. Yan and C. S. Tian, J. Mat. Lett. 58, 1508 (2004)   DOI   ScienceOn
6 J. W. Long, H. Y. Chen and Z. Y. Meng, J. Mater. Sci. Eng B. 99, 445 (2003)   DOI   ScienceOn
7 H. L. Du, Z. B. Pei, Z. M. Li, F. Luo, D. M. Zhu, W. C. Zhou and S. B. Qu, Trans. Met. Soc. 16, l65 (2006)
8 C. H. Kim,K. S. Song, H. B. Moon, J. Y. Son, B. G. Kim and J. H. Cho, J. Korean Phys. Soc. 51, 687 (2007)   DOI   ScienceOn
9 B. H. Kim and J. H. An, J. Korean Phys. Soc. 44, 346 (2004)
10 S. Y. Lee, H. J. Nam, Y. S. Kim, W. H. Jin and J. U. Bu, J. Korean Phys. Soc. 45, 227 (2004)
11 A. Ngamjarurojana, S. Ural, S. H. Park, S. Ananta, R. Yimnirun and K. Uchino, Ceram. Int. 272, 8842 (2004)
12 Y. Gao and Y. H. Chen, J. Ryu, J. Appl. Phys. 40, 687 (2001)   DOI
13 L. T. Li, Y. J. Yao and Z. H. Mu, Ferroelectrics. 28, 403 (1980)   DOI
14 K. Sakarai, K. Ohnishi and K. Tomikawa, Jpn. J. Appl. Phys. 38, 5592 (1999)   DOI
15 M. G. Kang, K. T. Kim, D. P. Kim and C. I. Kim, J. Korean Phys. Soc. 45, 227 (2004)
16 J. Yoo, K. Yoon, S. Hwang, S. Suh, J. Kim and C. Yoo, J. Sens Actuators A 90, 132 (2001)   DOI
17 L. T. Li, Y. J. Yao and Z. H. Mu, J. Ferroelectrics, 28, 403(1980)   DOI
18 S. L. Swartz and T. R. Shrout, Mater. Res. Bull. 17, 1245 (1982)   DOI   ScienceOn
19 Y.-J. Son, Y.-J. Kim, B.-H. Lee, S.-Y. Hwang, N.-K. Park, H.-Y. Chang, S.-K. Hong and S. J. Hong, J. Korean Phys. Soc. 51, 701 (2007)   DOI   ScienceOn
20 D. Vasic, E. Sarraute, F. Costa, P. Sangouard and E. Cattan. J. Sens Actuators A 117, 317 (2005)   DOI   ScienceOn
21 K. Kanayama and N. Maruko, Jpn. J. Appl. Phys. 36, 3048 (1997)   DOI
22 J. H. Hu, H. L. Li, H. L. W. Chan and C. L. Choy, J. Sens Actuators A 88, 79 (2001)   DOI   ScienceOn