Browse > Article
http://dx.doi.org/10.3938/jkps.53.38

Fabrication of ZnO Hexagonal Micropyramids by Using an rf-Magnetron Sputtering Method  

Komura, Shingo (Department of Applied Physics, Osaka City University)
Kim, DaeGwi (Department of Applied Physics, Osaka City University)
Wakaiki, Shuji (Department of Applied Physics, Osaka City University)
Nakayama, Masaaki (Department of Applied Physics, Osaka City University)
Abstract
We report on fabrication of self-assembled ZnO hexagonal micropyramids grown on a (0001) $Al_2O_3$ substrate by using an rf-magnetron sputtering method from the aspects of thier structural and optical properties. We found that the average size of the hexagonal micropyramids increases with increasing growth temperature. The reflection and the photoluminescence spectra at 10 K demonstrate high-quality optical properties for the total growth layer. Especially, for the growth temperatures of 650 ℃ and 700 ℃, fine structures are observable in the excitonic transitions in the reflection spectra. Furthermore, under high-density excitation conditions, photoluminescence bands originating from bi-exciton formation and from an inelastic scattering process of excitons, the so-called P emission, were observed.
Keywords
Hexagonal micropyramid; ZnO; rf-magnetron sputtering
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 3  (Related Records In Web of Science)
Times Cited By SCOPUS : 3
연도 인용수 순위
1 C. Kim, Y.-J. Kim, E.-S. Jang, G.-C. Yi and H.-H. Kim, Appl. Phys. Lett. 88, 093104 (2006)   DOI   ScienceOn
2 For a review, see U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho and H. Morkoc, J. Appl. Phys. 98, 041301 (2005).   DOI   ScienceOn
3 S. X. Mao, H. Zhao and Z. L. Wang, Appl. Phys. Lett. 83, 993 (2003).   DOI   ScienceOn
4 O. Madelung and Landolt-Bornstein, Physics of II-VI and I-VII Compounds, Semimagnetic Semiconductors, New Series, Group 3, Vol. 17, Part B (Springer, Berlin, 1982), p. 35
5 D. Kim, S. Wakaiki, S. Komura, M. Nakayama, Y. Mori and K. Suzuki, Appl Phys. Lett. 90, 101918 (2007)   DOI   ScienceOn
6 Z. W. Pan, Z. R. Dai and Z. L. Wang, Science 291, 1947 (2001)   DOI
7 T. Shimomura, D. Kim and M. Nakayama, J. Lumin. 112, 191 (2005)   DOI
8 C. Klingshirn, Phys. Status Solidi B 71, 547 (1975)   DOI   ScienceOn
9 Y. F. Chen, D. M. Bagnall, H. J. Koh, K. T. Park, K. Hiraga, Z. Zhu and T. Yao, J. Appl. Phys. 84, 3912 (1998)   DOI   ScienceOn
10 J. H. Hvam, Phys. Status Solidi B 63, 511 (1974)   DOI   ScienceOn
11 D. C. Reynolds, C. W. Litton and T. C. Collins, Phys. Rev. 140, A1726 (1965)   DOI
12 D. Kim, T. Terashita, I. Tanaka and M. Nakayama, Jpn. J. Appl. Phys. 42, L935 (2003)   DOI
13 K. Tamura, A. Ohtomo, K. Saikusa, Y. Osaka, T. Makino, Y. Segawa, M. Sumiya, S. Fuke, H. Koinuma and M. Kawasaki, J. Cryst. Growth 214/215, 59 (2000)   DOI