Browse > Article
http://dx.doi.org/10.5423/PPJ.OA.07.2022.0093

Complete Mitochondrial Genome Sequences of Korean Phytophthora infestans Isolates and Comparative Analysis of Mitochondrial Haplotypes  

Seo, Jin-Hee (Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration)
Choi, Jang-Gyu (Highland Agriculture Research Institute, National Institute of Crop Science, Rural Development Administration)
Park, Hyun-Jin (Department of Central Area Science, National Institute of Crop Science, Rural Development Administration)
Cho, Ji-Hong (Rural Development Administration)
Park, Young-Eun (Highland Agriculture Research Institute, National Institute of Crop Science, Rural Development Administration)
Im, Ju-Sung (National Institute of Crop Science, Rural Development Administration)
Hong, Su-Young (Department of Agriculture Biotechnology, National Academy of Agricultural Science, Rural Development Administration)
Cho, Kwang-Soo (Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration)
Publication Information
The Plant Pathology Journal / v.38, no.5, 2022 , pp. 541-549 More about this Journal
Abstract
Potato late blight caused by Phytophthora infestans is a destructive disease in Korea. To elucidate the genomic variation of the mitochondrial (mt) genome, we assembled its complete mt genome and compared its sequence among different haplotypes. The mt genome sequences of four Korean P. infestans isolates were revealed by Illumina HiSeq. The size of the circular mt genome of the four major genotypes, KR_1_A1, KR_2_A2, SIB-1, and US-11, was 39,872, 39,836, 39,872, and 39,840 bp, respectively. All genotypes contained the same 61 genes in the same order, comprising two RNA-encoding genes, 16 ribosomal genes, 25 transfer RNA, 17 genes encoding electron transport and ATP synthesis, 11 open reading frames of unknown function, and one protein import-related gene, tatC. The coding region comprised 91% of the genome, and GC content was 22.3%. The haplotypes were further analyzed based on sequence polymorphism at two hypervariable regions (HVRi), carrying a 2 kb insertion/deletion sequence, and HVRii, carrying 36 bp variable number tandem repeats (VNTRs). All four genotypes carried the 2 kb insertion/deletion sequence in HVRi, whereas HVRii had two VNTRs in KR_1_A1 and SIB-1 but three VNTRs in US-11 and KR_2_A2. Minimal spanning network and phylogenetic analysis based on 5,814 bp of mtDNA sequences from five loci, KR_1_A1 and SIB-1 were classified as IIa-6 haplotype, and isolates KR_1_A2 and US-11 as haplotypes IIa-5 and IIb-2, respectively. mtDNA sequences of KR_1_A1 and SIB-1 shared 100% sequence identity, and both were 99.9% similar to those of KR_2_A2 and US-11.
Keywords
late blight; minimal spanning network; mitochondrial genome; phylogeny; Phytophthora infestans;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Cardenas, M., Grajales, A., Sierra, R., Rojas, A., GonzalezAlmario, A., Vargas, A., Marin, M., Fermin, G., Lagos, L. E., Grunwald, N. J., Bernal, A., Salazar, C. and Restrepo, S. 2011. Genetic diversity of Phytophthora infestans in the Northern Andean region. BMC Genet. 12:23.
2 Cho, K.-S., Yun, B.-K., Yoon, Y.-H., Hong, S.-Y., Mekapogu, M., Kim, K.-H. and Yang, T.-J. 2015. Complete chloroplast genome sequence of tartary buckwheat (Fagopyrum tataricum) and comparative analysis with common buckwheat (F. esculentum). PLoS ONE 10:e0125332.
3 Elansky, S., Smirnov, A., Dyakov, Y., Dolgova, A., Filippov, A., Kozlovsky, B., Kozlovskaya, I., Russo, P., Smart, C. and Fry, W. 2001. Genotypic analysis of Russian isolates of Phytophthora infestans from the Moscow region, Siberia and Far East. J. Phytopathol. 149:605-611.   DOI
4 Gomez-Alpizar, L., Carbone, I. and Ristaino, J. B. 2007. An Andean origin of Phytophthora infestans inferred from mitochondrial and nuclear gene genealogies. Proc. Natl. Acad. Sci. U. S. A. 104:3306-3311.   DOI
5 Goss, E. M., Tabima, J. F., Cooke, D. E. L., Restrepo, S., Fry, W. E., Forbes, G. A., Fieland, V. J., Cardenas, M. and Grunwald, N. J. 2014. The Irish potato famine pathogen Phytophthora infestans originated in central Mexico rather than the Andes. Proc. Natl. Acad. Sci. U. S. A. 111:8791-8796.   DOI
6 Koh, Y. J., Goodwin, S. B., Dyer, A. T., Cohen, B. A., Ogoshi, A., Sato, N. and Fry, W. E. 1994. Migrations and displacements of Phytophthora-infestans populations in East Asian countries. Phytopathology 84:922-927.   DOI
7 Guo, L., Zhu, X.-Q., Hu, C.-H. and Ristaino, J. B. 2010. Genetic structure of Phytophthora infestans populations in China indicates multiple migration events. Phytopathology 100:997-1006.   DOI
8 May, K. J. and Ristaino, J. B. 2004. Identity of the mtDNA haplotype(s) of Phytophthora infestans in historical specimens from the Irish potato famine. Mycol. Res. 108:471-479.   DOI
9 Martin, F. N., Zhang, Y., Cooke, D. E. L., Coffey, M. D., Grunwald, N. J. and Fry, W. E. 2019. Insights into evolving global populations of Phytophthora infestans via new complementary mtDNA haplotype markers and nuclear SSRs. PLoS ONE 14:e0208606.
10 Patil, V. U., Vanishree, G., Pattanayak, D., Sharma, S., Bhardwaj, V., Singh, B. P. and Chakrabarti, S. K. 2017. Complete mitogenome mapping of potato late blight pathogen, Phytophthora infestans A2 mating type. Mitochondrial DNA Part B Resour. 2:90-91.   DOI
11 Martin, F. N. and Tooley, P. W. 2004. Identification of phytophthora isolates to species level using restriction fragment length polymorphism analysis of a polymerase chain reaction-amplified region of mitochondrial DNA. Phytopathology 94:983-991.   DOI
12 Peters, R. D., Al-Mughrabi, K. I., Kalischuk, M. L., Dobinson, K. F., Conn, K. L., Alkher, H., Islam, M. R., Daayf, F., Lynn, J., Bizimungu, B., De Koeyer, D., Levesque, C. A. and Kawchuk, L. M. 2014. Characterization of Phytophthora infestans population diversity in Canada reveals increased migration and genotype recombination. Can. J. Plant Pathol. 36:73-82.   DOI
13 Akino, S., Takemoto, D. and Hosaka, K. 2014. Phytophthora infestans: a review of past and current studies on potato late blight. J. Gen. Plant Pathol. 80:24-37.   DOI
14 Kumar, S., Stecher, G., Li, M., Knyaz, C. and Tamura, K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35:1547-1549.   DOI
15 Lassiter, E. S., Russ, C., Nusbaum, C., Zeng, Q., Saville, A., Olarte, R., Carbone, I., Hu, C.-H., Seguin-Orlando, A., Samaniego, J. A., Thorne, J. L. and Ristaino, J. B. 2015. Mitochondrial genome sequences reveal evolutionary relationships of the Phytophthora Ic clade species. Curr. Genet. 61:567-577.   DOI
16 Arora, R. K., Sharma, S. and Singh, B. P. 2014. Late blight disease of potato and its management. Potato J. 41:16-40.
17 Avila-Adame, C., Gomez-Alpizar, L., Zismann, V., Jones, K. M., Buell, C. R. and Ristaino, J. B. 2006. Mitochondrial genome sequences and molecular evolution of the Irish potato famine pathogen. Phytophthora infestans. Curr. Genet. 49:39-46.   DOI
18 Carter, D. A., Archer, S. A., Buck, K. W., Shaw, D. S. and Shattock, R. C. 1990. Restriction fragment length polymorphisms of mitochondrial DNA of Phytophthora infestans. Mycol. Res. 94:1123-1128.   DOI
19 Cho, H. M., Park, Y. E., Cho, J. H. and Kim, S. Y. 2003. Historical review of land race potatoes in Korea. J. Korean Soc. Hortic. Sci. 44:838-845 (in Korean).
20 Kubo, T., Kitazaki, K., Matsunaga, M., Kagami, H. and Mikami, T. 2011. Male sterility-inducing mitochondrial genomes: how do they differ? Crit. Rev. Plant Sci. 30:378-400.   DOI
21 Hyun, I.-H. and Choi, W. 2014. Phytophthora species, new threats to the plant health in Korea. Plant Pathol. J. 30:331-342.   DOI
22 Kim, J.-S., Lee, Y.-G., Kwon, M., Kim, J.-I., Jee, S. and Park K.-H. 2014. Mating types of Phytophthora infestans isolates and their responses to metalaxyl and dimethomorph in Korea. Res. Plant Dis. 20:25-30.   DOI
23 Drenth, A., Turkensteen, L. J. and Govers, F. 1993. The occurrence of the A2 mating type of Phytophthora infestans in the Netherlands: significance and consequences. Neth. J. Plant Pathol. 99:57-67.   DOI
24 Korkmaz, G., Holm, M., Wiens, T. and Sanyal, S. 2014. Comprehensive analysis of stop codon usage in bacteria and its correlation with release factor abundance. J. Biol. Chem. 289:30334-30342.   DOI
25 Choi, J.-G., Hong, S.-Y., Kessel, G. J. T., Cooke, D. E. L., Vossen, J. H., Cho, J.-H., Im, J.-S., Park, Y.-E. and Cho, K.-S. 2020. Genotypic and phenotypic characterization of Phytophthora infestans in South Korea during 2009-2016 reveals clonal reproduction and absence of EU_13_A2 genotype. Plant Pathol. 69:932-943.   DOI
26 Cooke, D. E. L. and Lees, A. K. 2004. Markers, old and new, for examining Phytophthora infestans diversity. Plant Pathol. 53:692-704.   DOI
27 Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783-791.   DOI
28 Fry, W. 2008. Phytophthora infestans: the plant (and R gene) destroyer. Mol. Plant Pathol. 9:385-402.   DOI
29 Goodwin, S. B. and Drenth, A. 1997. Origin of the A2 mating type of Phytophthora infestans outside Mexico. Phytopathology 87:992-999.   DOI
30 Gore, M. E., Altin, N., Yaman, T., Myers, K., Cagli, A., Cooke, D. E. L., Pirlak, U., Alkan, M., Kabakci, H., Zencirci, N., Fry, W. E. and Ozer, G. 2019. Severe outbreaks of Phytophthora infestans on potato in Turkey caused by recent changes in the pathogen population structure. Phytoparasitica 47:693-709.   DOI
31 Gotoh, K., Akino, S., Maeda, A., Kondo, N., Naito, S., Kato, M. and Ogoshi, A. 2005. Characterization of some Asian isolates of Phytophthora infestans. Plant Pathol. 54:733-739.   DOI
32 Yang, Z.-H., Qi, M.-X., Qin, Y.-X., Zhu, J.-H., Gui, X.-M., Tao, B., Xu, X.-H. and Zhang, F.-G. 2013. Mitochondrial DNA polymorphisms in Phytophthora infestans: new haplotypes are identified and re-defined by PCR. J. Microbiol. Methods 95:117-121.   DOI
33 Griffith, G. W. and Shaw, D. S. 1998. Polymorphisms in Phytophthora infestans: four mitochondrial haplotypes are detected after PCR amplification of DNA from pure cultures or from host lesions. Appl. Environ. Microbiol. 64:4007-4014.   DOI
34 Zhang, X.-Z., Kim, H.-Y. and Kim, B.-S. 2006. Analysis of genetic diversity of Phytophthora infestans in Korea by using molecular markers. J. Microbiol. Biotechnol. 16:423-430.
35 Rekad, F. Z., Cooke, D. E. L., Puglisi, I., Randall, E., Guenaoui, Y., Bouznad, Z., Evoli, M., Pane, A., Schena, L., di San Lio, G. M. and Cacciola, S. O. 2017. Characterization of Phytophthora infestans populations in northwestern Algeria during 2008- 2014. Fungal Biol. 121:467-477.   DOI
36 Shimelash, D., Hussien, T., Fininsa, C., Forbes, G. and Yuen, J. 2016. Mitochondrial DNA assessment of Phytophthora infestans isolates from potato and tomato in Ethiopia reveals unexpected diversity. Curr. Genet. 62:657-667.   DOI
37 Van der Lee, T., De Witte, I., Drenth, A., Alfonso, C. and Govers, F. 1997. AFLP linkage map of the oomycete Phytophthora infestans. Fungal Genet. Biol. 21:278-91.   DOI