Browse > Article
http://dx.doi.org/10.5423/PPJ.NT.04.2022.0051

Isolation and Identification of Ice Nucleation Active Fusarium Strains from Rapid Apple Declined Trees in Korea  

Avalos-Ruiz, Diane (School of Applied Biosciences, Kyungpook National University)
Ten, Leonid N. (School of Applied Biosciences, Kyungpook National University)
Kim, Chang-Kil (Department of Horticultural Science, Kyungpook National University)
Lee, Seung-Yeol (School of Applied Biosciences, Kyungpook National University)
Jung, Hee-Young (School of Applied Biosciences, Kyungpook National University)
Publication Information
The Plant Pathology Journal / v.38, no.4, 2022 , pp. 403-409 More about this Journal
Abstract
In biological particles such as Fusarium species, ice nucleation activity (INA) has been observed. Fusarium strains isolated from apple declined trees in Korea were identified with a multilocus sequence analysis using the tef1 and rpb1 genes. Droplet-freezing and tube-freezing assays were used to determine the INA of the strains, using Pseudomonas syringae pv. syringae KACC 21200 as a positive control and resulting in seven INA+ fungal strains that were identified as F. tricinctum (KNUF-21-F17, KNUF-21-F18, KNUF-21-F29, KNUF-21-F32, KNUF-21-F38, KNUF-21-F43, and KNUF-21-F44). The effect of Fusarium INA+ KNUF-21-F29 was compared to that of INA- strains on Chrysanthemum morifolium cv. Shinma explants. A higher callus formation and no-shoot formation were observed, suggesting that fungal INA could play a role in cold injuries and be a factor to consider in rapid apple decline. To the best of our knowledge, this is the first report of INA fungal strains isolated in Korea.
Keywords
cold injury; Fusarium; ice nucleation activity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Bhatia, S. 2015. Plant tissue culture. In: Modern applications of plant biotechnology in pharmaceutical sciences, eds. by S. Bhatia, K. Sharma, R. Dahiya and T. Bera, pp. 31-107. Academic Press, Boston, MA, USA.
2 Gardes, M. and Bruns, T. D. 1993. ITS primers with enhanced specificity for basidiomycetes: application to the identification of mycorrhizae and rusts. Mol. Ecol. 2:113-118.   DOI
3 Kim, Y. H., Kim, Y. C., Cho, B. H. and Kim, K. C. 1987. Ice-nucleation activity of Pseudomonas syringae isolated in Korea. Korean J. Plant Pathol. 3:180-186.
4 Kunert, A. T., Pohlker, M. L., Tang, K., Krevert, C. S., Wieder, C., Speth, K. R., Hanson, L. E., Morris, C. E., Schmale, D. G., Poschl, U. and Frohlich-Nowoisky, J. 2019. Macromolecular fungal ice nuclei in Fusarium: effects of physical and chemical processing. Biogeosciences 16:4647-4659.   DOI
5 Lindow, S. E. 1983. The role of bacterial ice nucleation in frost injury to plants. Annu. Rev. Phytopathol. 21:363-384.   DOI
6 Kumar, S., Stecher, G. and Tamura, K. 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33:1870-1874.   DOI
7 Lindow, S. E., Arny, D. C. and Upper, C. D. 1978. Erwinia herbicola: a bacterial ice nucleus active in increasing frost injury to corn. Phytopathology 68:523-527.   DOI
8 Ali, S., Renderos, W., Bevis, E., Hebb, J. and Abbasi, P. A. 2019. Diaporthe eres causes stem cankers and death of young apple rootstocks in Canada. Can. J. Plant Pathol. 42:218-227.
9 O'Donnell, K., Kistler, H. C., Cigelnik, E. and Ploetz, R. C. 1998. Multiple evolutionary origins of the fungus causing Panama disease of banana: concordant evidence from nuclear and mitochondrial gene genealogies. Proc. Natl. Acad. Sci. U. S. A. 95:2044-2049.   DOI
10 Kishimoto, T., Sekozawa, Y., Yamazaki, H., Murakawa, H., Kuchitsu, K. and Ishikawa M. 2014. Seasonal changes in ice nucleation activity in blueberry stems and effects of cold treatments in vitro. Environ. Exp. Bot. 106:13-23.   DOI
11 Lagzian, M., Latifi, A. M., Bassami, M. R. and Mirzaei, M. 2014. An ice nucleation protein from Fusarium acuminatum: cloning, expression, biochemical characterization and computational modeling. Biotechnol. Lett. 36:2043-2051.   DOI
12 Peter, K. 2020. Apple disease: rapid apple decline. College of Agricultural Sciences, Pennsylvania State University. URL https://extension.psu.edu/apple-disease-rapid-apple-decline [5 April 2022].
13 Kennelly, M. M., Cazorla, F. M., de Vicente, A., Ramos, C. and Sundin, G. W. 2007. Pseudomonas syringae diseases of fruit trees: progress toward understanding and control. Plant Dis. 91:4-17.   DOI
14 Lim, Y.-J, Ryu, D. K., Kang, M. K., Jeon, Y. and Park, D. H. 2019. Draft genome sequences of Pseudomonas syringae pv. syringae strain WSPS007 causing bacterial shoot blight on apple. Korean J. Microbiol. 55:80-82.   DOI
15 Failor, K. C., Liu, H., Mechan Llontop, M. E., LeBlanc, S., Eckshtain-Levi, N., Sharma, P., Reed, A., Yang, S., Tian, L., Lefevre, C. T., Menguy, N., Du, L., Monteil, C. L. and Vinatzer, B. A. 2021. Ice nucleation in a Gram-positive bacterium isolated from precipitation depends on a polyketide synthase and non-ribosomal peptide synthetase. ISME J. 16:890-897.
16 IPCC. 2021. Summary for policymakers. In: Climate change 2021: the physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, eds. by V. MassonDelmotte, P. Zhai, A. Pirani, S. L. Connors, C. Pean, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekci, R. Yu and B. Zhou, pp. 3-32. Cambridge University Press, Cambridge, UK.
17 Crous, P. W., Lombard, L., Sandoval-Denis, M., Seifert, K. A., Schroers, H.-J., Chaverri, P., Gene, J., Guarro, J., Hirooka, Y., Bensh, K., Kema, G. H. J., Lamprecht, S. C., Cai, L., Rossman, A. Y., Stadler, M., Summerbell, S. C., Taylor, J. W., Ploch, S., Visagie, C. M., Yilmaz, N., Frisvad, J. C., Abdel-Azeem, A. M., Abdollahzadeh, J., Abdolrasouli, A., Akulov, A., Alberts, J. F., Araujo, J. P. M., Ariyawansa, H. A., Bakhshi, M., Bendiksby, M., Ben Hadj Amor, A., Bezerra, J. D. P., Boekhout, T., Camara, M. P. S., Carbia, M., Cardinali, G., Castaneda-Ruiz, R. F., Celis, A., Chaturvedi, V., Collemare, J., Croll, D., Damm, U., Decock, C. A., de Vries, R. P., Ezekiel, C. N., Fan, X. L., Fernandez, N. B., Gaya, E., Gonzalez, C. D., Gramaje, D., Groenewald, J. Z., Grube, M., Guevara-Suarez, M., Gupta, V. K., Guarnaccia, V., Haddaji, A., Hagen, F., Haelewaters, D., Hansen, K., Hashimoto, A., Hernandez-Restrepo, M., Houbraken, J., Hubka, V., Hyde, K. D., Iturriaga, T., Jeewon, R., Johnston, P. R., Jurjevic, Z., Karalti, I., Korsten, L., Kuramae, E. E., Kusan, I., Labuda, R., Lawrence, D. P., Lee, H. B., Lechat, C., Li, H. Y., Litovka, Y. A., Maharachchikumbura, S. S. N., Marin-Felix, Y., Matio Kemkuignou, B., Matocec, N., McTaggart, A. R., Mlcoch, P., Mugnai, L., Nakashima, C., Nilsson, R. H., Noumeur, S. R., Pavlov, I. N., Peralta, M. P., Phillips, A. J. L., Pitt, J. I., Polizzi, G., Quaedvlieg, W., Rajeshkumar, K. C., Restrepo, S., Rhaiem, A., Robert, J., Robert, V., Rodrigues, A. M., SalgadoSalazar, C., Samson, R. A., Santos, A. C. S., Shivas, R. G., Souza-Motta, C. M., Sun, G. Y., Swart, W. J., Szoke, S., Tan, Y. P., Taylor, J. E., Taylor, P. W. J., Tiago, P. V., Vaczy, K. Z., van de Wiele, N., van der Merwe, N. A., Verkley, G. J. M., Vieira, W. A. S., Vizzini, A., Weir, B. S., Wijayawardene, N. N., Xia, J. W., Yanez-Morales, M. J., Yurkov, A., Zamora, J. C., Zare, R., Zhang, C. L. and Thines, M. 2021. Fusarium: more than a node or a foot-shaped basal cell. Stud. Mycol. 98:100116.
18 Naing, A. H., Park, K. I., Chung, M. Y., Lim, K. B. and Kim, C. K. 2016. Optimization of factors affecting efficient shoot regeneration in chrysanthemum cv. Shinma. Braz. J. Bot. 39:975-984.   DOI
19 O'Donnell, K., Sutton, D. A., Rinaldi, M. G., Sarver, B. A. J., Balajee, S. A., Schroers, H.-J., Summerbell, R. C., Robert, V. A. R. G., Crous, P. W., Zhang, N., Aoki, T., Jung, K., Park, J., Lee, Y.-H., Kang, S., Park, B. and Geiser, D. M. 2010. Internet-accessible DNA sequence database for identifying Fusaria from human and animal infections. J. Clin. Microbiol. 48:3708-3718.   DOI
20 O'Sullivan, D., Murray, B. J., Ross, J. F., Whale, T. F., Price, H. C., Atkinson, J. D., Umo, N. S. and Webb, M. E. 2015. The relevance of nanoscale biological fragments for ice nucleation in clouds. Sci. Rep. 5:8082.   DOI
21 Pouleur, S., Richard, C., Martin, J.-G. and Antoun, H. 1992. Ice nucleation activity in Fusarium acuminatum and Fusarium avenaceum. Appl. Environ. Microbiol. 58:2960-2964.   DOI
22 Villani, S. 2018. Defining factors associated with rapid apple decline in the Southeastern United States. URL https://apsnet.confex.com/apsnet/ICPP2018/meetingapp.cgi/Paper/10635 [5 April 2022].
23 Pandey, R., Usui, K., Livingstone, R. A., Fischer, S. A., Pfaendtner, J., Backus, E. H. G., Nagata, Y., Frolich-Nowoisky, J., Schmuser, L., Mauri, S., Scheel, J. F., Knopr, D. A., Poschl, U., Bonn, M. and Weidner, T. 2016. Ice-nucleating bacteria control the order and dynamics of interfacial water. Sci. Adv. 2:e1501630.   DOI
24 Rosenberger, D. 2017. Sudden apple decline: trunk-related problems in apples. Cornell University, Ithaca, NY, USA. 4 pp.
25 Stokstad, E. 2019. Rapid apple decline has researchers stumped. Science 363:1259.   DOI
26 Singh, J., Pereira Silva, K. J., Fuchs, M. and Khan, A. 2019. Potential role of weather, soil and plant microbial communities in rapid decline of apple trees. PLoS ONE 14:e0213293.   DOI
27 Suzuki, N., Rivero, R. M., Shulaev, V., Blumwald, E. and Mittler, R. 2014. Abiotic and biotic stress combinations. New Phytol. 203:32-43.   DOI
28 Vesonder, R. F. and Golinski, P. 2014. Matabolites of Fusarium. In: Fusarium: mycotoxins, taxonomy, pathogenicity, ed. by J. Chelkowski, pp. 1-40. Elsevier Science Publishers, New York, NY, USA.
29 White, T. J., Bruns, T., Lee, S. and Taylor, J. W. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR protocols: a guide to methods and applications, eds. by M. A. Innis, D. H. Gelfand, J. J. Sninsky, T. J. White, pp. 315-322. Academic Press, San Diego, CA, USA.