Browse > Article
http://dx.doi.org/10.5423/PPJ.OA.01.2022.0011

Identification of Endogenous Genes for Normalizing Titer Variation of Citrus Tristeza Virus in Aphids at Different Post-acquisition Feeding Times  

Wang, Hongsu (Citrus Research Institute, Southwest University)
Chen, Qi (Citrus Research Institute, Southwest University)
Liu, Luqin (Citrus Research Institute, Southwest University)
Zhou, Yan (Citrus Research Institute, Southwest University)
Wang, Huanhuan (Citrus Research Institute, Southwest University)
Li, Zhongan (Citrus Research Institute, Southwest University)
Liu, Jinxiang (Citrus Research Institute, Southwest University)
Publication Information
The Plant Pathology Journal / v.38, no.4, 2022 , pp. 287-295 More about this Journal
Abstract
Citrus tristeza virus (CTV) is efficiently transmitted in a semi-persistent manner by the brown citrus aphid (Toxoptera citricida (Kirkaldy)). Currently, the most sensitive method for detecting plant viruses in insect vectors is reverse-transcription quantitative polymerase chain reaction (RT-qPCR). In this study, the elongation factor-1 alpha (EF-1α) gene and acidic p0 ribosomal protein (RPAP0) gene were confirmed to be suitable reference genes for RT-qPCR normalization in viruliferous T. citricida aphids using the geNorm, NormFinder, and BestKeeper tools. Then the relative CTV titer in aphids (T. citricida) at different post-acquisition feeding times on healthy plants was quantified by RT-qPCR using EF-1α and RPAP0 as reference genes. The relative CTV titer retained in the aphids gradually decreased with increasing feeding time. During the first 0.5 h of feeding time on healthy plants, the remaining CTV titer in aphids showed about 80% rapid loss for the highly transmissible isolate CT11A and 40% loss for the poorly transmissible isolate CTLJ. The relative CTV titer in aphids during more than 12 h post-acquisition times for CT11A was significantly lower than at the other feeding times, which is similar to the trend found for CTLJ. To our knowledge, this is the first report about the relative titer variation of CTV remaining in T. citricida at different post-acquisition feeding times on healthy plants.
Keywords
citrus tristeza virus; relative titer variation; Toxoptera citricida;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Blanc, S., Ammar, E. D., Garcia-Lampasona, S., Dolja, V. V., Llave, C., Baker, J. and Pirone, T. P. 1998. Mutations in the potyvirus helper component protein: effects on interactions with virions and aphid stylets. J. Gen. Virol. 79:3119-3122.   DOI
2 Andersen, C. L., Jensen, J. L. and Orntoft, T. F. 2004. Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 64:5245-5250.   DOI
3 Bar-Joseph, M., Marcus, R. and Lee, R. F. 1989. The continuous challenge of citrus tristeza virus control. Ann. Rev. Phytopathol. 27:291-316.   DOI
4 Bertin, S., Pacifico, D., Cavalieri, V., Marzachi, C. and Bosco, D. 2016. Transmission of grapevine virus A and grapevine leafroll-associated viruses 1 and 3 by Planococcus ficus and Planococcus citri fed on mixed-infected plants. Ann. Appl. Biol. 169:53-63.   DOI
5 Bertolini, E., Moreno, A., Capote, N., Olmos, A., de Luis, A., Vidal, E., Perez-Panades, J. and Cambra, M. 2008. Quantitative detection of Citrus tristeza virus in plant tissues and single aphids by real-time RT-PCR. Eur. J. Plant Pathol. 120:177-188.   DOI
6 Chen, A. Y. S., Walker, G. P., Carter, D. and Ng, J. C. K. 2011. A virus capsid component mediates virion retention and transmission by its insect vector. Proc. Natl. Acad. Sci. U. S. A. 108:16777-16782.   DOI
7 Betancourt, M., Fereres, A., Fraile, A. and Garcia-Arenal, F. 2008. Estimation of the effective number of founders that initiate an infection after aphid transmission of a multipartite plant virus. J. Virol. 82:12416-12421.   DOI
8 Costa, A. S. and Grant, T. J. 1951. Studies on transmission of the tristeza virus by the vector, Aphis citricidus. Phytopathology 41:105-113.
9 Brault, V., van den Heuvel, J. F., Verbeek, M., Ziegler-Graff, V., Reutenauer, A., Herrbach, E., Garaud, J. C., Guilley, H., Richards, K. and Jonard, G. 1995. Aphid transmission of beet western yellows luteovirus requires the minor capsid read-through protein P74. EMBO J. 14:650-659.   DOI
10 Barzegar, A., Rahimian, H. and Sohi, H. H. 2010. Comparison of the minor coat protein gene sequences of aphid-transmissible and -nontransmissible isolates of Citrus tristeza virus. J. Gen. Plant Pathol. 76:143-151.   DOI
11 Broadbent, P., Brlansky, R. H. and Indsto, J. 1996. Biological characterization of Australian isolates of citrus tristeza virus and separation of subisolates by single aphid transmissions. Plant Dis. 80:329-333.   DOI
12 Wu, K., Liu, W., Mar, T., Liu, Y., Wu, Y. and Wang, X. 2014. Sequencing and validation of reference genes to analyze endogenous gene expression and quantify yellow dwarf viruses using RT-qPCR in viruliferous Rhopalosiphum padi. PLoS ONE 9:e97038.   DOI
13 Xie, L.-H., Quan, X., Zhang, J., Yang, Y.-Y., Sun, R.-H., Xia, M.-C., Xue, B.-G., Wu, C., Han, X.-Y., Xue, Y.-N. and Yang, L.-R. 2019. Selection of reference genes for real-time quantitative PCR normalization in the process of Gaeumannomyces graminis var. tritici infecting wheat. Plant Pathol. J. 35:11-18.   DOI
14 Limburg, D. D., Mauk, P. A. and Godfrey, L. D. 1997. Characteristics of beet yellows closterovirus transmission to sugar beets by Aphis fabae. Phytopathology 87:766-771.   DOI
15 Harper, S. J., Killiny, N., Tatineni, S., Gowda, S., Cowell, S. J., Shilts, T. and Dawson, W. O. 2016. Sequence variation in two genes determines the efficacy of transmission of citrus tristeza virus by the brown citrus aphid. Arch. Virol. 161:3555-3559.   DOI
16 Hilf, M. E., Mavrodieva, V. A. and Garnsey, S. M. 2005. Genetic marker analysis of a global collection of isolates of Citrus tristeza virus: characterization and distribution of CTV genotypes and association with symptoms. Phytopathology 95:909-917.   DOI
17 Jiang, Y. X., de Blas, C., Barrios, L. and Fereres, A. 2000. Correlation between whitefly (Homoptera: Aleyrodidae) feeding behavior and transmission of tomato yellow leaf curl virus. Ann. Entomol. Soc. Am. 93:573-579.   DOI
18 Zhang, B.-Z., Liu, J.-J., Yuan, G.-H., Chen, X.-L. and Gao, X.-W. 2018. Selection and evaluation of potential reference genes for gene expression analysis in greenbug (Schizaphis graminum Rondani). J. Integr. Agric. 17:2054-2065.   DOI
19 Zhou, Y., Zhou, C. Y., Wang, X. F., Liu, Y. Q., Liu, K. H., Zou, Q., Xiang, Y. and Li, Z. A. 2011. Influence of the quantity and variability of citrus tristeza virus on transmissibility by single Toxoptera citricida. J. Plant Pathol. 93:97-103.
20 Mason, G., Caciagli, P., Accotto, G. P. and Noris, E. 2008. Realtime PCR for the quantitation of tomato yellow leaf curl Sardinia virus in tomato plants and in Bemisia tabaci. J. Virol. Methods 147:282-289.   DOI
21 Mehta, P., Brlansky, R. H., Gowda, S. and Yokomi, R. K. 1997. Reverse-transcription polymerase chain reaction detection of citrus tristeza virus in aphids. Plant Dis. 81:1066-1069.   DOI
22 Li, R., Xie, W., Wang, S., Wu, Q., Yang, N.,Yang, X., Pan, H., Zhou, X., Bai, L. and Xu, B. 2013. Reference gene selection for qRT-PCR analysis in the sweet potato whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae). PLoS ONE 8:e53006.   DOI
23 Lu, Y., Yuan, M., Gao, X., Kang, T., Zhan, S., Wan, H. and Li, J. 2013. Identification and validation of reference genes for gene expression analysis using quantitative PCR in Spodoptera litura (Lepidoptera: Noctuidae). PLoS ONE 8:e68059.   DOI
24 Gutierrez, L., Mauriat, M., Pelloux, J., Bellini, C. and Van Wuytswinkel, O. 2008. Towards a systematic validation of references in real-time RT-PCR. Plant Cell 20:1734-1735.   DOI
25 Hunter, W. B., Dang, P. M., Bausher, M. G., Chaparro, J. X., McKendree, W., Shatters, R. G., McKenzie, C. L. and Sinisterra, X. H. 2003. Aphid biology: expressed genes from alate Toxoptera citricida, the brown citrus aphid. J. Insect Sci. 3:23.
26 Liang, P., Guo, Y., Zhou, X. and Gao, X. 2014. Expression profiling in Bemisia tabaci under insecticide treatment: indicating the necessity for custom reference gene selection. PLoS ONE 9:e87514.   DOI
27 Maroniche, G. A., Sagadin, M., Mongelli, V. C., Truol, G. A. and del Vas, M. 2011. Reference gene selection for gene expression studies using RT-qPCR in virus-infected planthoppers. Virol. J. 8:308.   DOI
28 Killiny, N., Harper, S. J., Alfaress, S., El Mohtar, C. and Dawson, W. O. 2016. Minor coat and heat-shock proteins are involved in binding of citrus tristeza virus to the foregut of its aphid vector, Toxoptera citricida. Appl. Environ. Microbiol. 82:6294-6302.   DOI
29 Liu, J., Li, L., Zhao, H., Zhou, Y., Wang, H., Li, Z. and Zhou, C. 2019. Titer variation of citrus tristeza virus in aphids at different acquisition access periods and its association with transmission efficiency. Plant Dis. 103:874-879.   DOI
30 Livak, K. J. and Schmittgen, T. D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-∆∆CT method. Methods 25:402-408.   DOI
31 Moreno, A., Fereres, A. and Cambra, M. 2009. Quantitative estimation of plum pox virus targets acquired and transmitted by a single Myzus persicae. Arch. Virol. 154:1391-1399.   DOI
32 Roistacher, C. N. and Bar-Jospeh, M. 1987. Aphid transmission of citrus tristeza virus: a review. Phytophylactica 19:163-167.
33 Liu, J., Wang, H., Wang, H., Zhou, Y., Li, Z. and Zhou, C. 2021. Molecular characteristic and expression level of minor coat protein of citrus tristeza virus isolates with different transmissibility by Toxoptera citricida. Acta Hortic. Sin. 48:1023-1030 (in Chinese with English abstract).
34 Kim, H.-K. and Yun, S.-H. 2011. Evaluation of potential reference genes for quantitative RT-PCR analysis in Fusarium graminearum under different culture conditions. Plant Pathol. J. 27:301-309.   DOI
35 Pfaffl, M. W., Tichopad, A., Prgomet, C. and Neuvians, T. P. 2004. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper Excel-based tool using pair-wise correlations. Biotechnol. Lett. 26:509-515.   DOI
36 Raccah, B., Loebenstein, G. and Bar-Joseph, M. 1976. Transmission of citrus tristeza virus by the melon aphid. Phytopathology 66:1102-1104.   DOI
37 Raccah, B., Loebenstein, G. and Singer, S. 1980. Aphid-transmissibility variants of citrus tristeza virus in infected citrus trees. Phytopathology 70:89-93.   DOI
38 Saponari, M., Manjunath, K. and Yokomi, R. K. 2008. Quantitative detection of citrus tristeza virus in citrus and aphids by real-time reverse transcription-PCR (TaqMan). J. Virol. Methods 147:43-53.   DOI
39 Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A. and Speleman, F. 2002. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 3:research0034.1.
40 Rocha-Pena, M. A., Lee, R. F., Lastra, R., Niblett, C. L., OchoaCorona, F. M., Garnsey, S. M. and Yokomi, R. K. 1995. Citrus tristeza virus and its aphid vector Toxoptera citricida: threats to citrus production in the carribean and Central and North America. Plant Dis. 79:437-445.   DOI
41 Shang, F., Wei, D.-D., Jiang, X.-Z., Wei, D., Shen, G.-M., Feng, Y.-C., Li, T. and Wang, J.-J. 2015. Reference gene validation for quantitative PCR under various biotic and abiotic stress conditions in Toxoptera citricida (Hemiptera, Aphidiae). J. Econ. Entomol. 108:2040-2047.   DOI
42 Sharma, S. R. 1989. Factors affecting vector transmission of citrus tristeza virus in South Africa. Zentralbl. Mikrobiol. 144:283-294.   DOI
43 Stewart, L. R., Medina, V., Tian, T., Turina, M., Falk, B. W. and Ng, J. C. 2010. A mutation in the Lettuce infectious yellows virus minor coat protein disrupts whitefly transmission but not in planta systemic movement. J. Virol. 84:12165-12173.   DOI
44 Uzest, M., Gargani, D., Drucker, M., Hebrard, E., Garzo, E., Candresse, T., Fereres, A. and Blanc, S. 2007. A protein key to plant virus transmission at the tip of the insect vector stylet. Proc. Natl. Acad. Sci. U. S. A. 104:17959-17964.   DOI
45 Moreno, P., Ambros, S., Albiach-Marti, M. R., Guerri, J. and Pena, L. 2008. Citrus tristeza virus: a pathogen that changed the course of the citrus industry. Mol. Plant Pathol. 9:251-268.   DOI
46 Moury, B., Fabre, F. and Senoussi, R. 2007. Estimation of the number of virus particles transmitted by an insect vector. Proc. Natl. Acad. Sci. U. S. A. 104:17891-17896.   DOI
47 Ng, J. C. K. and Falk, B. W. 2006. Virus-vector interactions mediating nonpersistent and semipersistent transmission of plant viruses. Ann. Rev. Phytopathol. 44:183-212.   DOI
48 Olmos, A., Cambra, M., Esteban, O., Gorris, M. T. and Terrada, E. 1999. New device and method for capture, reverse transcription and nested PCR in a single closed tube. Nucleic Acids Res. 27:1564-1565.   DOI