Browse > Article
http://dx.doi.org/10.5423/PPJ.OA.01.2022.0008

Field Performance of Resistant Potato Genotypes Transformed with the EFR Receptor from Arabidopsis thaliana in the Absence of Bacterial Wilt (Ralstonia solanacearum)  

Dalla-Rizza, Marco (Unidad de Biotecnología, Instituto Nacional de Investigacion Agropecuaria)
Schvartzman, Claudia (Unidad de Biotecnología, Instituto Nacional de Investigacion Agropecuaria)
Murchio, Sara (Unidad de Biotecnología, Instituto Nacional de Investigacion Agropecuaria)
Berrueta, Cecilia (Programa de Produccion Hortícola, Instituto Nacional de Investigacion Agropecuaria)
Boschi, Federico (Instituto Nacional de Semillas)
Menoni, Mariana (Instituto Nacional de Semillas)
Lenzi, Alberto (Programa de Produccion Hortícola, Instituto Nacional de Investigacion Agropecuaria)
Gimenez, Gustavo (Programa de Produccion Hortícola, Instituto Nacional de Investigacion Agropecuaria)
Publication Information
The Plant Pathology Journal / v.38, no.3, 2022 , pp. 239-247 More about this Journal
Abstract
Bacterial wilt caused by the pathogen Ralstonia solanacearum is a devastating disease of potato crops. Harmonizing immunity to pathogens and crop yield is a balance between productive, economic, and environmental interests. In this work, the agronomic performance of two events of potato cultivar INIA Iporá expressing the Arabidopsis thaliana EFR gene (Iporá EFR 3 and Iporá EFR 12) previously selected for their high resistance to bacterial wilt was evaluated under pathogen-free conditions. During two cultivation cycles, the evaluated phenotypic characteristics were emergence, beginning of flowering, vigor, growth, leaf morphology, yield, number and size of tubers, analyzed under biosecurity standards. The phenotypic characteristics evaluated did not show differences, except in the morphology of the leaf with a more globose appearance and a shortening of the rachis in the transformation events with respect to untransformed Iporá. The Iporá EFR 3 genotype showed a ~40% yield decrease in reference to untransformed Iporá in the two trials, while Iporá EFR 12 did not differ statistically from untransformed Iporá. Iporá EFR 12 shows performance stability in the absence of the pathogen, compared to the untransformed control, positioning it as an interesting candidate for regions where the presence of the pathogen is endemic and bacterial wilt has a high economic impact.
Keywords
defense genes; genetic transformation; immunity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Boschi, F., Schvartzman, C., Murchio, S., Ferreira, V., Siri, M. I., Galvan, G. A., Smoker, M., Stransfeld, L., Zipfel C., Vilaro, F. L. and Dalla-Rizza, M. 2017. Enhanced bacterial wilt resistance in potato through expression of Arabidopsis EFR and introgression of quantitative resistance from Solanum commersonii. Front. Plant Sci. 8:1642.   DOI
2 Heil, M. 2002. Ecological costs of induced resistance. Curr. Opin. Plant Biol. 5:343-350.   DOI
3 International Union for The Protection of New Varieties of Plants. 2004. Guidelines for the conduct of tests for distinctness, uniformity and stability - Potato (Solanum tuberosum L.). URL http://www.upov.int/edocs/tgdocs/en/tg023.pdf [20 January 2022].
4 Celis-Gamboa, C., Struik, P. C., Jacobsen, E. and Visser, R. G. F. 2003. Temporal dynamics of tuber formation and related processes in a crossing population of potato (S. tuberosum). Ann. Appl. Biol. 143:175-186.   DOI
5 Pfeilmeier, S., George, J., Morel, A., Roy, S., Smoker, M., Stransfeld, L., Downie, J. A., Peeters, N., Malone, J. G. and Zipfel, C. 2019. Expression of the Arabidopsis thaliana immune receptor EFR in Medicago truncatula reduces infection by a root pathogenic bacterium, but not nitrogen-fixing rhizobial symbiosis. Plant Biotechnol. J. 17:569-579.   DOI
6 Kunwar, S., Iriarte, F., Fan, Q., da Silva, E. E., Ritchie, L., Nguyen, N. S., Freeman, J. H., Stall, R. E., Jones, J. B., Minsavage, G. V., Colee, J., Scott, J. W., Vallad, G. E., Zipfel, C., Horvath, D., Wetwood, J., Hutton, S. F. and Paret, M. L. 2018. Transgenic expression of EFR and Bs2 genes for field management of bacterial wilt and bacterial spot of tomato. Phytopathology 108:1402-1411.   DOI
7 Lacombe, S., Rougon-Cardoso, A., Sherwood, E., Peeters, N., Dahlbeck, D., van Esse, H. P., Smoker, M., Rallapalli, G., Thomma, B. P. H. J., Staskawica, B., Jones, J. D. G. and Zipfel, C. 2010. Interfamily transfer of a plant pattern-recognition receptor confers broad-spectrum bacterial resistance. Nat. Biotechnol. 28:365-369.   DOI
8 Mercado Modelo. 2017. Farmer Observatory. Potato crop, 2017. URL http://www.mercadomodelo.net [20 January 2022].
9 Yadeta, K. A. and Thomma, B. P. H. J. 2013. The xylem as battleground for plant hosts and vascular wilt pathogens. Front. Plant Sci. 4:97.   DOI
10 Schoonbeek, H.-J., Wang, H.-H., Stefanato, F. L., Craze, M., Bowden, S., Wallington, E., Zipfel, C. and Ridout, C. J. 2015. Arabidopsis EF-Tu receptor enhances bacterial disease resistance in transgenic wheat. New Phytol. 206:606-613.   DOI
11 Struik, P. C. 2007. Above-ground and below-ground plant development. In: Potato biology and biotechnology: advances and perspective, eds. by D. Vreugdenhil, J. Bradshaw, C. Gebhardt, F. Govers, M. Taylor, D. Mackerron and H. Ross, pp. 219-233. Elsevier, Amsterdam, The Netherlands.
12 van Esse, H. P., Reuber, T. L. and van der Does, D. 2019. Genetic modification to improve disease resistance in crops. New Phytol. 225:70-86.
13 Hayward, A. C. 1991. Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum. Annu. Rev. Phytopathol. 29:65-87.   DOI
14 Dalla Rizza, M., Vilaro, F. L., Torres, D. G. and Maeso, D. 2007. Detection of PVY extreme resistance genes in potato germplasm from the Uruguayan breeding program. Am. J. Potato Res. 83:297-304.   DOI
15 Dong, O. X. and Ronald, P. C. 2019. Genetic engineering for disease resistance in plants: recent progress and future perspectives. Plant Physiol. 180:26-38.   DOI
16 Dong, O. X. and Ronald, P. C. 2021. Targeted DNA insertion in plants. Proc. Natl. Acad. Sci. U. S. A. 118:e2004834117.   DOI
17 Lu, F., Wang, H., Wang, S., Jiang, W., Shan, C., Li, B., Yang, J., Zhang, S. and Sun, W. 2015. Enhancement of innate immune system in monocot rice by transferring the dicotyledonous elongation factor Tu receptor EFR. J. Integr. Plant Biol. 57:641-652.   DOI
18 Kamthan, A., Chaudhuri, A., Kamthan, M. and Datta, A. 2016. Genetically modified (GM) crops: milestones and new advances in crop improvement. Theor. Appl. Genet. 129:1639-1655.   DOI
19 Ning, Y., Liu, W. and Wang, G.-L. 2017. Balancing immunity and yield in crop plants. Trends Plant Sci. 22:1069-1079.   DOI
20 Piazza, S., Campa, M., Pompili, V., Dalla Costa, L., Salvagnin, U., Nekrasov, V., Zipfel, C. and Malnoy, M. 2021. The Arabidopsis pattern recognition receptor EFR enhances fire blight resistance in apple. Hortic. Res. 8:204.   DOI
21 Boller, T. and Felix, G. 2009. A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu. Rev. Plant Biol. 60:379-406.   DOI
22 Schwessinger, B., Bahar, O., Thomas, N., Holton, N., Nekrasov, V., Ruan, D., Canlas, P. E., Daudi, A., Petzold, C. J., Singan, V. R., Kuo, R., Chovatia, M., Daum, C., Heazlewood, J. L., Zipfel, C. and Ronald, P. C. 2015. Transgenic expression of the dicotyledonous pattern recognition receptor EFR in rice leads to ligand-dependent activation of defense responses. PLoS Pathog. 11:e1004809.   DOI
23 Lu, Y. and Tsuda, K. 2021. Intimate association of PRR- and NLR-mediated signaling in plant immunity. Mol. Plant-Microbe Interact. 34:3-14.   DOI
24 Mitre, L. K., Teixeira-Silva, N. S., Rybak, K., Magalhaes, D. M., de Souza-Neto, R. R., Robatzek, S., Zipfel, C. and de Souza, A. A. 2021. The Arabidopsis immune receptor EFR increases resistance to the bacterial pathogens Xanthomonas and Xylella in transgenic sweet orange. Plant Bioetchnol. J. 19:1294-1296.   DOI
25 Andrivon, D., Montarry, J. and Fournet, S. 2022. Plant health in a one health world: missing links and hidden treasures. Plant Pathol. 71:23-29.   DOI
26 ENC Instituto Nacional de Semilas. 2021. Historical evaluation results, National potato cultivars, 2021. URL https://www.inase.uy/Publicaciones/Publicaciones.aspx?s=dt-enc [20 January 2022].
27 Boote, K. J. and Loomis, R. S. 1991. Modeling crop photosynthesis: from biochemistry to canopy. Crop Science Society of America, Madison, WI, USA. 140 pp.
28 Brown, J. K. M. 2015. Durable resistance of crops to disease: a Darwinian perspective. Annu. Rev. Phytopathol. 53:513-539.   DOI
29 Elphinstone, J. G. 2005. The current bacterial wilt situation: a global overview. In: Bacterial wilt: the disease and the Ralstonia solanacearum species complex, eds. by C. Allen, P. Prior and A. C. Hayward, pp. 9-28. American Phytopathological Society, St. Paul, MN, USA.
30 Dong, O. X., Yu, S., Jain, R., Zhang, N., Duong, P. Q., Butler, C., Li, Y., Lipzen, A., Martin, J. A., Barry, K. W., Schmutz, J., Tian, L. and Ronald, P. C. 2020. Marker-free carotenoidenriched rice generated through targeted gene insertion using CRISPR-Cas9. Nat. Commun. 11:1178.   DOI
31 Haverkort, A. J. 2007. Potato crop response to radiation and daylength. In: Potato biology and biotechnology: advances and perspective, eds. by D. Vreugdenhil, J. Bradshaw, C. Gebhardt, F. Govers, M. Taylor, D. Mackerron and H. Ross, pp. 353-363. Elsevier, Amsterdam, The Netherlands.
32 Fort, S., Ferreira, V., Murchio, S., Schvartzman, C., Galvan, G. A., Vilaro, F., Siri, M. I. and Dalla-Rizza, M. 2020. Potato plants transformed with the Arabidopsis EF-Tu receptor (EFR) show restricted pathogen colonization and enhanced bacterial wilt resistance under conditions resembling natural field infections. Agrocienc. Urug. 24:e413.
33 Gurr, S. J. and Rushton, P. J. 2005. Engineering plants with increased disease resistance: how are we going to express it? Trends Biotechnol. 23:283-290.   DOI