Browse > Article
http://dx.doi.org/10.5423/PPJ.FT.09.2021.0147

Comparative Genomic Analysis of Pathogenic Factors of Pectobacterium Species Isolated in South Korea Using Whole-Genome Sequencing  

Jee, Samnyu (Highland Agriculture Research Institute, National Institute of Crop Science, Rural Development Administration)
Kang, In-Jeong (Department of Agricultural Biotechnology, Seoul National University)
Bak, Gyeryeong (Highland Agriculture Research Institute, National Institute of Crop Science, Rural Development Administration)
Kang, Sera (Highland Agriculture Research Institute, National Institute of Crop Science, Rural Development Administration)
Lee, Jeongtae (Highland Agriculture Research Institute, National Institute of Crop Science, Rural Development Administration)
Heu, Sunggi (Department of Plant Science, College of Agriculture and Life Science, Seoul National University)
Hwang, Ingyu (Department of Agricultural Biotechnology, Seoul National University)
Publication Information
The Plant Pathology Journal / v.38, no.1, 2022 , pp. 12-24 More about this Journal
Abstract
In this study, we conducted whole-genome sequencing with six species of Pectobacterium composed of seven strains, JR1.1, BP201601.1, JK2.1, HNP201719, MYP201603, PZ1, and HC, for the analysis of pathogenic factors associated with the genome of Pectobacterium. The genome sizes ranged from 4,724,337 bp to 5,208,618 bp, with the GC content ranging from 50.4% to 52.3%. The average nucleotide identity was 98% among the two Pectobacterium species and ranged from 88% to 96% among the remaining six species. A similar distribution was observed in the carbohydrate-active enzymes (CAZymes) class and extracellular plant cell wall degrading enzymes (PCWDEs). HC showed the highest number of enzymes in CAZymes and the lowest number in the extracellular PCWDEs. Six strains showed four subsets, and HC demonstrated three subsets, except hasDEF, in type I secretion system, while the type II secretion system of the seven strains was conserved. Components of human pathogens, such as Salmonella pathogenicity island 1 type type III secretion system (T3SS) and effectors, were identified in PZ1; T3SSa was not identified in HC. Two putative effectors, including hrpK, were identified in seven strains along with dspEF. We also identified 13 structural genes, six regulator genes, and five accessory genes in the type VI secretion system (T6SS) gene cluster of six Pectobacterium species, along with the loss of T6SS in PZ1. HC had two subsets, and JK2.1 had three subsets of T6SS. With the GxSxG motif, the phospholipase A gene did locate among tssID and duf4123 genes in the T6SSa cluster of all strains. Important domains were identified in the vgrG/paar islands, including duf4123, duf2235, vrr-nuc, and duf3396.
Keywords
genomic analysis; Pectobacterium species; putative phospholipase effector; type secretion system;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Arizala, D. and Arif, M. 2019. Genome-wide analyses revealed remarkable heterogeneity in pathogenicity determinants, antimicrobial compounds, and CRISPR-Cas systems of complex phytopathogenic genus Pectobacterium. Pathogens 8:247.   DOI
2 Cascales, E. and Cambillau, C. 2012. Structural biology of type VI secretion systems. Philos. Trans. R. Soc. Lond. B Biol. Sci. 367:1102-1111.   DOI
3 Figaj, D., Ambroziak, P., Przepiora, T. and Skorko-Glonek, J. 2019. The role of proteases in the virulence of plant pathogenic bacteria. Int. J. Mol. Sci. 20:672.   DOI
4 He, X., Lu, T. and Zhou, X. 2021. Whole genome sequencing and comparative genomics analysis of Pectobacterium carotovorum identifies key pathogenic genes. Mol. Phylogenet. Evol. 162:107114.   DOI
5 Lee, D. H., Kim, J.-B., Lim, J.-A., Han, S.-W. and Heu, S. 2014. Genetic diversity of Pectobacterium carotovorum subsp. brasiliensis isolated in Korea. Plant Pathol. J. 30:117-124.   DOI
6 Ma, S., Dong, Y., Wang, N., Liu, J., Lu, C. and Liu, Y. 2020. Identification of a new effector-immunity pair of Aeromonas hydrophila type VI secretion system. Vet. Res. 51:71.   DOI
7 Haft, D. H., DiCuccio, M., Badretdin, A., Brover, V., Chetvernin, V., O'Neill, K., Li, W., Chitsaz, F., Derbyshire, M. K., Gonzales, N. R., Gwadz, M., Lu, F., Marchler, G. H., Song, J. S., Thanki, N., Yamashita, R. A., Zheng, C., Thibaud-Nissen, F., Geer, L. Y., Marchler-Bauer, A. and Pruitt, K. D. 2018. Ref-Seq: an update on prokaryotic genome annotation and curation. Nucleic Acids Res. 46:D851-D860.   DOI
8 Ma, W., Dong, F. F. T., Stavrinides, J. and Guttman, D. S. 2006. Type III effector diversification via both pathoadaptation and horizontal transfer in response to a coevolutionary arms race. PLoS Genet. 2:e209.   DOI
9 Nykyri, J., Niemi, O., Koskinen, P., Nokso-Koivisto, J., Pasanen, M., Broberg, M., Plyusnin, I., Toronen, P., Holm, L., Pirhonen, M. and Palva, E. T. 2012. Revised phylogeny and novel horizontally acquired virulence determinants of the model soft rot phytopathogen Pectobacterium wasabiae SCC3193. PLoS Pathog. 8:e1003013.   DOI
10 Meier-Kolthoff, J. P., Carbasse, J. S., Peinado-Olarte, R. L. and Goker, M. 2021. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res. 50:D801-D807.
11 Moussa, H. B., Pedron, J., Bertrand, C., Hecquet, A. and Barny, M.-A. 2021. Pectobacterium quasiaquaticum sp. nov., isolated from waterways. Int. J. Syst. Evol. Microbiol. 71:005042.
12 Lee, D. H., Lim, J.-A., Koh, Y.-J., Heu, S. and Roh, E. 2017. The draft genome sequence of Pectobacterium carotovorum subsp. actinidiae KKH3 that infects kiwi plant and potential bioconversion applications. Korean J. Microbiol. 53:323-325.   DOI
13 Visnovsky, S. B., Panda, P., Taylor, R. and Pitman, A. R. 2017. Draft genome sequences of Pectobacterium carotovorum subsp. actinidiae ICMP 19971 and ICMP 19972, two strains isolated from Actinidia chinensis with symptoms of summer canker in South Korea. Genome Announc. 5:e00104-e00117.
14 Wang, S., Geng, Z., Zhang, H., She, Z. and Dong, Y. 2021. The Pseudomonas aeruginosa PAAR2 cluster encodes a putative VRR-NUC domain-containing effector. FEBS J. 288:5755-5767.   DOI
15 Zhang, H., Yohe, T., Huang, L., Entwistle, S., Wu, P., Yang, Z., Busk, P. K., Xu, Y. and Yin, Y. 2018. dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 46:W95-W101.   DOI
16 Jee, S., Choi, J.-G., Lee, Y.-G., Kwon, M., Hwang, I. and Heu, S. 2020. Distribution of Pectobacterium species isolated in South Korea and comparison of temperature effects on pathogenicity. Plant Pathol. J. 36:346-354.   DOI
17 Li, L., Yuan, L., Shi, Y., Xie, X., Chai, A., Wang, Q. and Li, B. 2019. Comparative genomic analysis of Pectobacterium carotovorum subsp. brasiliense SX309 provides novel insights into its genetic and phenotypic features. BMC Genomics 20:486.   DOI
18 Li, X., Ma, Y., Liang, S., Tian, Y., Yin, S., Xie, S. and Xie, H. 2018. Comparative genomics of 84 Pectobacterium genomes reveals the variations related to a pathogenic lifestyle. BMC Genomics 19:889.   DOI
19 Lou, L., Zhang, P., Piao, R. and Wang, Y. 2019. Salmonella pathogenicity island 1 (SPI-1) and its complex regulatory network. Front. Cell. Infect. Microbiol. 9:270.   DOI
20 Mattinen, L., Nissinen, R., Riipi, T., Kalkkinen, N. and Pirhonen, M. 2007. Host-extract induced changes in the secretome of the plant pathogenic bacterium Pectobacterium atrosepticum. Proteomics 7:3527-3537.   DOI
21 Tatusova, T., DiCuccio, M., Badretdin, A., Chetvernin, V., Nawrocki, E. P., Zaslavsky, L., Lomsadze, A., Pruitt, K. D., Borodovsky, M. and Ostell, J. 2016. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 44:6614-6624.   DOI
22 Xu, P., Wang, H., Qin, C., Li, Z., Lin, C., Liu, W. and Miao, W. 2021. Analysis of the taxonomy and pathogenic factors of Pectobacterium aroidearum L6 using whole-genome sequencing and comparative genomics. Front. Microbiol. 12:679102.   DOI
23 Nguyen, T. T. H., Myrold, D. D. and Mueller, R. S. 2019. Distributions of extracellular peptidases across prokaryotic genomes reflect phylogeny and habitat. Front. Microbiol. 10:413.   DOI
24 Pallen, M. J., Beatson, S. A. and Bailey, C. M. 2005. Bioinformatics, genomics and evolution of non-flagellar type-III secretion systems: a Darwinian perpective. FEMS Microbiol. Rev. 29:201-229.   DOI
25 Park, T.-H., Choi, B.-S., Choi, A.-Y., Choi, I.-Y., Heu, S. and Park, B.-S. 2012. Genome sequence of Pectobacterium carotovorum subsp. carotovorum strain PCC21, a pathogen causing soft rot in Chinese cabbage. J. Bacteriol. 194:6345-6346.   DOI
26 Li, W., O'Neill, K. R., Haft, D. H., DiCuccio, M., Chetvernin, V., Badretdin, A., Coulouris, G., Chitsaz, F., Derbyshire, M. K., Durkin, A. S., Gonzales, N. R., Gwadz, M., Lanczycki, C. J., Song, J. S., Thanki, N., Wang, J., Yamashita, R. A., Yang, M., Zheng, C., Marchler-Bauer, A. and Thibaud-Nissen, F. 2021. RefSeq: expanding the prokaryotic genome annotation pipeline reach with protein family model curation. Nucleic Acids Res. 49:D1020-D1028.   DOI
27 Park, D. H., Kim, J. S., Lee, H. G., Hahm, Y. I. and Lim, C. K. 1999. Black leg of potato plants by Erwinia carotovora subsp. atroseptica. Plant Dis. Agric. 5:64-66.
28 Pasanen, M., Waleron, M., Schott, T., Cleenwerck, I., Misztak, A., Waleron, K., Pritchard, L., Bakr, R., Degefu, Y., van der Wolf, J., Vandamme, P. and Pirhonen, M. 2020. Pectobacterium parvum sp. nov., having a Salmonella SPI-1-like type III secretion system and low virulence. Int. J. Syst. Evol. Microbiol. 70:2440-2448.   DOI
29 Portier, P., Pedron, J., Taghouti, G., Dutrieux, C. and Barny, M. A. 2020. Updated taxonomy of Pectobacterium genus in the CIRM-CFBP bacterial collection: when newly described species reveal "Old" endemic population. Microorganisms 8:1441.   DOI
30 Powell. S., Forslund, K., Szklarczyk, D., Trachana, K., Roth, A., Huerta-Cepas, J., Gabaldon, T., Rattei, T., Creevey, C., Kuhn. M., Jensen, L. J., von Mering, C. and Bork, P. 2014. eggNOG v4.0: nested orthology inference across 3686 organisms. Nucleic Acids Res. 42:D231-D239.   DOI
31 Green, E. R. and Mecsas, J. 2016. Bacterial secretion systems: an overview. Microbiol. Spectr. 4:10.1128/microbiolspec.VMBF-0012-2015.   DOI
32 Russell, A. B., LeRoux, M., Hathazi, K., Agnello, D. M., Ishikawa, T., Wiggins, P. A., Wai, S. N. and Mougous, J. D. 2013. Diverse type VI secretion phospholipases are functionally plastic antibacterial effectors. Nature 496:508-512.   DOI
33 Bailey, T. L., Johnson, J., Grant, C. E. and Noble, W. S. 2015. The MEME suite. Nucleic Acids Res. 43:W39-W49.   DOI
34 Bernal, P., Llamas, M. A. and Filloux, A. 2018. Type VI secretion systems in plant-associated bacteria. Environ. Microbiol. 20:1-15.   DOI
35 Coulthurst, S. 2019. The Type VI secretion system: a versatile bacterial weapon. Microbiology 165:503-515.   DOI
36 Darling, A. C. E., Mau, B., Blattner, F. R. and Perna, N. T. 2004. Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res. 14:1394-1403.   DOI
37 Jana, B. and Salomon, D. 2019. Type VI secretion system: a modular toolkit for bacterial dominance. Future Microbiol. 14:1451-1463.   DOI