Browse > Article
http://dx.doi.org/10.5423/PPJ.OA.10.2020.0204

Detection of Blackleg Resistance Gene Rlm1 in Double-Low Rapeseed Accessions from Sichuan Province, by Kompetitive Allele-Specific PCR  

Chai, Liang (Crop Research Institute, Sichuan Academy of Agricultural Sciences)
Zhang, Jinfang (Crop Research Institute, Sichuan Academy of Agricultural Sciences)
Dilantha Fernando, Wannakuwattewaduge Gerard (Department of Plant Science, University of Manitoba)
Li, Haojie (Crop Research Institute, Sichuan Academy of Agricultural Sciences)
Huang, Xiaoqin (Institute of Plant Protection, Sichuan Academy of Agricultural Sciences)
Cui, Cheng (Crop Research Institute, Sichuan Academy of Agricultural Sciences)
Jiang, Jun (Crop Research Institute, Sichuan Academy of Agricultural Sciences)
Zheng, Benchuan (Crop Research Institute, Sichuan Academy of Agricultural Sciences)
Liu, Yong (Institute of Plant Protection, Sichuan Academy of Agricultural Sciences)
Jiang, Liangcai (Crop Research Institute, Sichuan Academy of Agricultural Sciences)
Publication Information
The Plant Pathology Journal / v.37, no.2, 2021 , pp. 194-199 More about this Journal
Abstract
Blackleg is a serious disease in Brassica plants, causing moderate to severe yield losses in rapeseed worldwide. Although China has not suffered from this disease yet (more aggressive Leptosphaeria maculans is not present yet), it is crucial to take provisions in breeding for disease resistance to have excellent blackleg-resistant cultivars already in the fields or in the breeding pipeline. The most efficient strategy for controlling this disease is breeding plants with identified resistance genes. We selected 135 rapeseed accessions in Sichuan, including 30 parental materials and 105 hybrids, and we determined their glucosinolate and erucic acid content and confirmed 17 double-low materials. A recently developed single-nucleotide polymorphism (SNP) marker, SNP_208, was used to genotype allelic Rlm1/rlm1 on chromosome A07, and 87 AvrLm1-resistant materials. Combined with the above-mentioned seed quality data, we identified 11 AvrLm1-resistant double-low rapeseed accessions, including nine parental materials and two hybrids. This study lays the foundation of specific R gene-oriented breeding, in the case that the aggressive Leptosphaeria maculans invades and establishes in China in the future and a robust and less labor consuming method to identify resistance in canola germplasm.
Keywords
blackleg resistance; double-low rapeseed; KASP; Leptosphaeria maculans; Rlm1 gene;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Marcroft, S. J., Van de Wouw, A. P., Salisbury, P. A., Potter, T. D. and Howlett, B. J. 2012. Effect of rotation of canola (Brassica napus) cultivars with different complements of blackleg resistance genes on disease severity. Plant Pathol. 61:934-944.   DOI
2 Semagn, K., Babu, R., Hearne, S. and Olsen, M. 2014. Single nucleotide polymorphism genotyping using kompetitive allele specific PCR (KASP): overview of the technology and its application in crop improvement. Mol. Breed. 33:1-14.   DOI
3 Sun, L., Wang, X., Yu, K., Li, W., Peng, Q., Chen, F., Zhang, W., Fu, S., Xiong, D., Chu, P., Guan, R. and Zhang, J. 2018. Mapping of QTLs controlling seed weight and seed-shape traits in Brassica napus L. using a high-density SNP map. Euphytica 214:228.   DOI
4 Van de Wouw, A. P., Cozijnsen, A. J., Hane, J. K., Brunner, P. C., McDonald, B. A., Oliver, R. P. and Howlett, B. J. 2010. Evolution of linked avirulence effectors in Leptosphaeria maculans is affected by genomic environment and exposure to resistance genes in host plants. PLoS Pathog. 6:e1001180.   DOI
5 Larkan, N. J., Ma, L., Haddadi, P., Buchwaldt, M., Parkin, I. A. P., Djavaheri, M. and Borhan, M. H. 2020. The Brassica napus wall-associated kinase-like (WAKL) gene Rlm9 provides race-specific blackleg resistance. Plant J. 104:892-900.   DOI
6 Delourme, R., Chevre, A. M., Brun, H., Rouxel, T., Balesdent, M. H., Dias, J. S., Salisbury, P., Renard, M. and Rimmer, S. R. 2006. Major gene and polygenic resistance to Leptosphaeria maculans in oilseed rape (Brassica napus). Eur. J. Plant Pathol. 114:41-52.   DOI
7 Liu, Z., Latunde-Dada, A. O., Hall, A. M. and Fitt, B. D. L. 2014. Phoma stem canker disease on oilseed rape (Brassica napus) in China is caused by Leptosphaeria biglobosa 'brassicae'. Eur. J. Plant Pathol. 140:841-857.   DOI
8 Zhang, X., Peng, G., Kutcher, H. R., Balesdent, M.-H., Delourme, R. and Fernando, W. G. D. 2016a. Breakdown of Rlm3 resistance in the Brassica napus-Leptosphaeria maculans pathosystem in western Canada. Eur. J. Plant Pathol. 145:659-674.   DOI
9 Zhang, X., Peng, G., Parks, P., Hu, B., Li, Q., Jiang, L., Niu, Y., Huang, S. and Fernando, W. G. D. 2016b. Identifying seedling and adult plant resistance of Chinese Brassica napus germplasm to Leptosphaeria maculans. Plant Pathol. 66:752-762.   DOI
10 Zhang, X., White, R. P., Demir, E., Jedryczka, M., Lange, R. M., Islam, M., Li, Z. Q., Huang, Y. J., Hall, A. M., Zhou, G., Wang, Z., Cai, X., Skelsey, P. and Fitt, B. D. L. 2014. Leptosphaeria spp., phoma stem canker and potential spread of L. maculans on oilseed rape crops in China. Plant Pathol. 63:598-612.   DOI
11 Doyle, J. J. and Doyle, J. L. 1990. Isolation of plant DNA from fresh tissues. Focus 12:13-15.
12 Fernando, W. G. D., Zhang, X. and Amarasinghe, C. C. 2016. Detection of Leptosphaeria maculans and Leptosphaeria biglobosa causing blackleg disease in canola from Canadian canola seed lots and dockage. Plants 5:12.   DOI
13 Fitt, B. D. L., Brun, H., Barbetti, M. J. and Rimmer, S. R. 2006. World-wide importance of phoma stem canker (Leptosphaeria maculans and L. biglobosa) on oilseed rape (Brassica napus). Eur. J. Plant Pathol. 114:3-15.   DOI
14 Ansan-Melayah, D., Balesdent, M. H., Delourme, R., Pilet, M. L., Tanguy, X., Renard, M. and Rouxel, T. 1998. Genes for race-specific resistance against blackleg disease in Brassica napus L. Plant Breed. 117:373-378.   DOI
15 Fitt, B. D. L., Hu, B. C., Li, Z. Q., Liu, S. Y., Lange, R. M., Kharbanda, P. D., Butterworth, M. H. and White, R. P. 2008. Strategies to prevent spread of Leptosphaeria maculans (phoma stem canker) onto oilseed rape crops in China; costs and benefits. Plant Pathol. 57:652-664.   DOI
16 Fu, F., Liu, X., Wang, R., Zhai, C., Peng, G., Yu, F. and Fernando, W. G. D. 2019. Fine mapping of Brassica napus blackleg resistance gene Rlm1 through bulked segregant RNA sequencing. Sci. Rep. 9:14600.   DOI
17 Gan, L., Sun, X., Jin, L., Wang, G., Xu, J., Wei, Z. and Fu, T. 2003. Establishment of math models of NIRS analysis for oil and protein contents in seed of Brassica napus. Sci. Agric. Sin. 36:1609-1613 (in Chinese).   DOI
18 Howlett, B. J. 2004. Current knowledge of the interaction between Brassica napus and Leptosphaeria maculans. Can. J. Plant Pathol. 26:245-252.   DOI
19 Kutcher, H. R., Yu, F. and Brun, H. 2010. Improving blackleg disease management of Brassica napus from knowledge of genetic interactions with Leptosphaeria maculans. Can. J. Plant Pathol. 32:29-34.   DOI
20 Basunanda, P., Radoev, M., Ecke, W., Friedt, W., Becker, H. C. and Snowdon, R. J. 2010. Comparative mapping of quantitative trait loci involved in heterosis for seedling and yield traits in oilseed rape (Brassica napus L.). Theor. Appl. Genet. 120:271-281.   DOI
21 Larkan, N. J., Lydiate, D. J., Parkin, I. A. P., Nelson, M. N., Epp, D. J., Cowling, W. A., Rimmer, S. R. and Borhan, M. H. 2013. The Brassica napus blackleg resistance gene LepR3 encodes a receptor-like protein triggered by the Leptosphaeria maculans effector AVRLM1. New Phytol. 197:595-605.   DOI
22 Larkan, N. J., Ma, L. and Borhan, M. H. 2015. The Brassica napus receptor-like protein RLM2 is encoded by a second allele of the LepR3/Rlm2 blackleg resistance locus. Plant Biotechnol. J. 13:983-992.   DOI