Browse > Article
http://dx.doi.org/10.5423/PPJ.NT.08.2020.0155

Inhibition of Fusarium oxysporum f. sp. nicotianae Growth by Phenylpropanoid Pathway Intermediates  

Shull, Timothy E. (Department of Plant and Soil Sciences, University of Kentucky)
Kurepa, Jasmina (Department of Plant and Soil Sciences, University of Kentucky)
Miller, Robert D. (Department of Plant and Soil Sciences, University of Kentucky)
Martinez-Ochoa, Natalia (Department of Plant and Soil Sciences, University of Kentucky)
Smalle, Jan A. (Department of Plant and Soil Sciences, University of Kentucky)
Publication Information
The Plant Pathology Journal / v.36, no.6, 2020 , pp. 637-642 More about this Journal
Abstract
Fusarium wilt in tobacco caused by the fungus Fusarium oxysporum f. sp. nicotianae is a disease-management challenge worldwide, as there are few effective and environmentally benign chemical agents for its control. This challenge results in substantial losses in both the quality and yield of tobacco products. Based on an in vitro analysis of the effects of different phenylpropanoid intermediates, we found that the early intermediates trans-cinnamic acid and para-coumaric acid effectively inhibit the mycelial growth of F. oxysporum f. sp. nicotianae strain FW316F, whereas the downstream intermediates quercetin and caffeic acid exhibit no fungicidal properties. Therefore, our in vitro screen suggests that trans-cinnamic acid and para-coumaric acid are promising chemical agents and natural lead compounds for the suppression of F. oxysporum f. sp. nicotianae growth.
Keywords
fungicidal; Fusarium oxysporum; para-coumaric acid; tobacco; trans-cinnamic acid;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Avenot, H. F. and Michailides, T. J. 2010. Progress in understanding molecular mechanisms and evolution of resistance to succinate dehydrogenase inhibiting (SDHI) fungicides in phytopathogenic fungi. Crop Prot. 29:643-651.   DOI
2 Bock, C. H., Shapiro-Ilan, D. I., Wedge, D. E. and Cantrell, C. L. 2014. Identification of the antifungal compound, transcinnamic acid, produced by Photorhabdus luminescens, a potential biopesticide against pecan scab. J. Pest Sci. 87:155-162.   DOI
3 Bubici, G., Kaushal, M., Prigigallo, M. I., Gomez-Lama Cabanas, C. and Mercado-Blanco, J. 2019. Biological control agents against Fusarium wilt of banana. Front. Microbiol. 10:616.   DOI
4 Daoubi, M., Hernandez-Galan, R., Benharref, A. and Collado, I. G. 2005. Screening study of lead compounds for natural product-based fungicides:antifungal activity and biotransformation of 6α,7α-dihydroxy-β-himachalene by Botrytis cinerea. J. Agric. Food Chem. 53:6673-6677.   DOI
5 Duniway, J. M. 2002. Status of chemical alternatives to methyl bromide for pre-plant fumigation of soil. Phytopathology 92:1337-1343.   DOI
6 Fisher, C., Pearce, B. and Kinney, J. 2018. Chloropicrin fumigation to control fusarium wilt of burley tobacco in Kentucky. URL https://www.coresta.org/sites/default/files/abstracts/2018_TWC48_Fisher.pdf. [14 October 2020].
7 Gordon, T. R. 2017. Fusarium oxysporum and the fusarium wilt syndrome. Annu. Rev. Phytopathol. 55:23-39.   DOI
8 Guzman, J. D. 2014. Natural cinnamic acids, synthetic derivatives and hybrids with antimicrobial activity. Molecules 19:19292-19349.   DOI
9 Hao, W.-Y., Ren, L.-X., Ran, W. and Shen, Q.-R. 2010. Allelopathic effects of root exudates from watermelon and rice plants on Fusarium oxysporum f.sp. niveum. Plant Soil 336:485-497.   DOI
10 Hazir, S., Shapiro-Ilan, D. I., Bock, C. H. and Leite, L. G. 2017. Trans-cinnamic acid and Xenorhabdus szentirmaii metabolites synergize the potency of some commercial fungicides. J. Invertebr. Pathol. 145:1-8.   DOI
11 LaMondia, J. A. 1995. Influence of resistant tobacco and tobacco cyst nematodes on root infection and secondary inoculum of Fusarium oxysporum f. sp. nicotiana. Plant Dis. 79:337-340.   DOI
12 LaMondia, J. A. 2015. Fusarium wilt of tobacco. Crop Prot. 73:73-77.   DOI
13 Leslie, J. F., Summerell, B. A. and Bullck, S. 2006. The Fusarium laboratory manual. Blackwell Publishing, Ames, IA, USA. 388 pp.
14 Li, D., Luong, T. T. M., Dan, W.-J., Ren, Y., Nien, H. X., Zhang, A.-L. and Gao, J.-M. 2018. Natural products as sources of new fungicides (IV): synthesis and biological evaluation of isobutyrophenone analogs as potential inhibitors of classII fructose-1,6-bisphosphate aldolase. Bioorg. Med. Chem. 26:386-393.   DOI
15 Lucas, J. A., Hawkins, N. J. and Fraaije, B. A. 2015. The evolution of fungicide resistance. Adv. Appl. Microbiol. 90:29-92.   DOI
16 Masiello, M., Somma, S., Ghionna, V., Logrieco, A. F. and Moretti, A. 2019. In vitro and in field response of different fungicides against Aspergillus flavus and Fusarium species causing ear rot disease of maize. Toxins (Basel) 11:11.   DOI
17 Miller, N. F., Standish, J. R. and Quesada-Ocampo, L. M. 2020. Sensitivity of Fusarium oxysporum f. sp. niveum to prothioconazole and pydiflumetofen in vitro and efficacy for fusarium wilt management in watermelon. Plant Health Prog. 21:13-18.   DOI
18 Musso, L., Dallavalle, S., Farina, G. and Burrone, E. 2012. Natural products as sources of new fungicides: synthesis and antifungal activity of zopfiellin analogues. Chem. Biol. Drug. Des. 79:780-789.   DOI
19 Morales, J., Mendoza, L. and Cotoras, M. 2017. Alteration of oxidative phosphorylation as a possible mechanism of the antifungal action of p-coumaric acid against Botrytis cinerea. J. Appl. Microbiol. 123:969-976.   DOI
20 Mota, F. L., Queimada, A. J., Pinho, S. P. and Macedo, E. A. 2008. Aqueous solubility of some natural phenolic compounds. Ind. Eng. Chem. Res. 47:5182-5189.   DOI
21 Neelam, Khatkar, A. and Sharma, K. K. 2020. Phenylpropanoids and its derivatives: biological activities and its role in food, pharmaceutical and cosmetic industries. Crit. Rev. Food Sci. Nutr. 60:2655-2675.   DOI
22 Nirmaladevi, D., Venkataramana, M., Srivastava, R. K., Uppalapati, S. R., Gupta, V. K., Yli-Mattila, T., Clement Tsui, K. M., Srinivas, C., Niranjana, S. R. and Chandra, N. S. 2016. Molecular phylogeny, pathogenicity and toxigenicity of Fusarium oxysporum f. sp. lycopersici. Sci. Rep. 6:21367.   DOI
23 Schneider, S. M., Rosskopf, E. N., Leesch, J. G., Chellemi, D. O., Bull, C. T. and Mazzola, M. 2003. United States Department of Agriculture-Agricultural Research Service research on alternatives to methyl bromide: pre-plant and post-harvest. Pest Manag. Sci. 59:814-826.   DOI
24 Steinkellner, S. and Mammerler, R. 2007. Effect of flavonoids on the development of Fusarium oxysporum f. sp. lycopersici. J. Plant Interact. 2:17-23.   DOI
25 UNEP Ozone Secretariat. 2020. Handbook for the Montreal protocol on substances that deplete the ozone layer. 14th ed. United Nations Environment Programme, Nairobi, Kenya. 937 pp.
26 Vogt, T. 2010. Phenylpropanoid biosynthesis. Mol. Plant 3:2-20.   DOI
27 Ye, S. F., Yu, J. Q., Peng, Y. H., Zheng, J. H. and Zou, L. Y. 2004. Incidence of Fusarium wilt in Cucumis sativus L. is promoted by cinnamic acid, an autotoxin in root exudates. Plant Soil 263:143-150.   DOI
28 Wu, H.-S., Raza, W., Fan, J.-Q., Sun, Y.-G., Bao, W. and Shen Q.-R. 2008. Cinnamic acid inhibits growth but stimulates production of pathogenesis factors by in vitro cultures of Fusarium oxysporum f.sp. niveum. J. Agric. Food Chem. 56:1316-1321.   DOI
29 Xie, H., Yan, D., Mao, L., Wang, Q., Li, Y., Ouyang, C., Guo, M. and Cao, A. 2015. Evaluation of methyl bromide alternatives efficacy against soil-borne pathogens, nematodes and soil microbial community. PLoS ONE 10:e0117980.   DOI
30 Xu, D., Hu, M.-J., Wang, Y.-Q. and Cui, Y.-L. 2019. Antioxidant activities of quercetin and its complexes for medicinal application. Molecules 24:1123.   DOI
31 Zhao, Q., Chen, L., Dong, K., Dong, Y. and Xiao, J. 2018. Cinnamic acid inhibited growth of faba bean and promoted the incidence of fusarium wilt. Plants (Basel) 7:84.   DOI