Browse > Article
http://dx.doi.org/10.5423/PPJ.OA.09.2020.0176

Inhibitory Effect of Moriniafungin Produced by Setosphaeria rostrata F3736 on the Development of Rhizopus Rot  

Park, Min Young (Department of Biosystems and Biotechnology, Korea University Graduate School)
Park, So Jung (Food-Biotech Research, LOTTE R&D Center)
Kim, Jae-Jin (Division of Environmental Science and Ecological Engineering, College of Life Science and Biotechnology, Korea University)
Lee, Dong Ho (Department of Biosystems and Biotechnology, Korea University Graduate School)
Kim, Beom Seok (Department of Biosystems and Biotechnology, Korea University Graduate School)
Publication Information
The Plant Pathology Journal / v.36, no.6, 2020 , pp. 570-578 More about this Journal
Abstract
Rhizopus rot is a serious postharvest disease of various crops caused by Rhizopus spp. and controlled mainly by synthetic fungicides. We detected the antifungal activity of a culture extract of Setosphaeria rostrata F3736 against Rhizopus oryzae. The active ingredient was identified as moriniafungin, a known sordarin derivative, which showed minimum inhibitory concentrations of 1-8 ㎍/ml against Colletotrichum spp. and 0.03-0.13 ㎍/ml against Rhizopus spp. in vitro. Moriniafungin showed protective control efficacies against Rhizopus rot on apple and peach fruits. Treatment with 25 ㎍/ml moriniafungin delimited the lesion diameter significantly by 100% on R. oryzae-inoculated apple fruits compared with the non-treated control. Treatment with 0.04 ㎍/ml of moriniafungin reduced the lesion diameter significantly by 56.45%, and treatment with higher concentrations of 0.2-25 ㎍/ml reduced the lesion diameter by 70-90% on Rhizopus stolonifer var. stolonifer-inoculated peach fruit. These results suggest moriniafungin has potential as a control agent of postharvest diseases caused by Rhizopus spp.
Keywords
fungal metabolite; moriniafungin; postharvest disease; Rhizopus rot; Setosphaeria rostrata;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Altomare, C., Perrone, G., Zonno, M. C., Evidente, A., Pengue, R., Fanti, F. and Polonelli, L. 2000. Biological characterization of fusapyrone and deoxyfusapyrone, two bioactive secondary metabolites of Fusarium semitectum. J. Nat. Prod. 63:1131-1135.   DOI
2 Amadioha, A. C. 2001. Fungitoxic effects of some leaf extracts against Rhizopus oryzae causing tuber rot of potato. Arch. Phytopathol. Plant Prot. 33:499-507.   DOI
3 Anke, T., Oberwinkler, F., Steglich, W. and Schramm, G. 1977. The strobilurins: new antifungal antibiotics from the basidiomycete Strobilurus tenacellus. J. Antibiot. 30:806-810.   DOI
4 Bartlett, D. W., Clough, J. M., Godwin, J. R., Hall, A. A., Hamer, M. and Parr-Dobrzanski, B. 2002. The strobilurin fungicides. Pest Manag. Sci. 58:649-662.   DOI
5 Basilio, A., Justice, M., Harris, G., Bills, G., Collado, J., de la Cruz, M., Diez, M. T., Hernandez, P., Liberator, P., Nielsen Kahn, J., Pelaez, F, Platas, G., Schmatz, D., Shastry, M., Tormo, J. R., Andersen, G. R. and Vicente, F. 2006. The discovery of moriniafungin, a novel sorda rin derivative produced by Morinia pestalozzioides. Bioorg. Med. Chem. 14:560-566.   DOI
6 Batta, Y. A. 2007. Control of postharvest diseases of fruit with an invert emulsion formulation of Trichoderma harzianum Rifai. Postharvest Biol. Technol. 43:143-150.   DOI
7 Bautista-Banos, S., Bosquez-Molina, E. and Barrera-Necha, L. L. 2014. Rhizopus stolonifer (soft rot). In: Postharvest decay: control strategies, ed. By S. Banos, pp. 1-44. Elsevier, London, UK.
8 Bonnarme, P., Djian, A., Latrasse, A., Feron, G., Ginies, C., Du- rand, A. and Le Quere, J.-L. 1997. Production of 6-pentyl-α-pyrone by Trichoderma sp. from vegetable oils. J. Biotechnol. 56:143-150.   DOI
9 Clough, J. M., Anthony, V. M., de Fraine, P. J., Fraser, T. E. M., Godfrey, C. R. A., Godwin, J. R. and Youle, D. 1995. The synthesis of fungicidal β-methoxyacrylates. In: Proceedings of the Eighth International Congress of Pesticide Chemistry, eds. by N. N. Ragsdale, P. C. Kearney and J. R. Plimmer, pp. 59-73. American Chemical Society, Washington, DC, USA.
10 Daferner, M., Mensch, S., Anke, T. and Sterner, O. 1999. Hypoxysordarin, a new sordarin derivative from Hypoxylon croceum. Z. Naturforsch. C J. Biosci. C 54:474-480.   DOI
11 Espinel-Ingroff, A., Fothergill, A., Ghannoum, M., Manavathu, E., Ostrosky-Zeichner, L., Pfaller, M., Rinaldi, M., Schell, W. and Walsh, T. 2005. Quality control and reference guidelines for CLSI broth microdilution susceptibility method (M38-A document) for amphotericin B, itraconazole, posaconazole, and voriconazole. J. Clin. Microbiol. 43:5243-5246.   DOI
12 Deshmukh, S. K., Misra, J. K., Tewari, J. P. and Papp, T. 2016. Fungi: applications and management strategies. CRC Press, Boca Raton, FL, USA. 496 pp.
13 Dominguez, J. M., Kelly, V. A., Kinsman, O. S., Marriott, M. S., de las Heras, F. G. and Martin, J. J. 1998. Sordarins: a new class of antifungals with selective inhibition of the protein synthesis elongation cycle in yeasts. Antimicrob. Agents Chemother. 42:2274-2278.   DOI
14 El-Katatny, M. H. and Emam, A. S. 2020. Control of postharvest tomato rot by spore suspension and antifungal metabolites of Trichoderma harzianum. J. Microbiol. Biotechnol. Food Sci. 1:1505-1528.
15 Harman, G. E., Howell, C. R., Viterbo, A., Chet, I. and Lorito, M. 2004. Trichoderma species: opportunistic, avirulent plant symbionts. Nat. Rev. Microbiol. 2:43-56.   DOI
16 Herreros, E., Martinez, C. M., Almela, M. J., Marriott, M. S., De Las Heras, F. G. and Gargallo-Viola, D. 1998. Sordarins: in vitro activities of new antifungal derivatives against pathogenic yeasts, Pneumocystis carinii, and filamentous fungi. Antimicrob. Agents Chemother. 42:2863-2869.   DOI
17 Kim, B. S. and Hwang, B. K. 2007. Microbial fungicides in the control of plant diseases. J. Phytopathol. 155:641-653.   DOI
18 Horvat, R. J., Chapman, G. W. Jr., Robertson, J. A., Meredith, F. I., Scorza, R., Callahan, A. M. and Morgens, P. 1990. Comparison of the volatile compounds from several commercial peach cultivars. J. Agric. Food Chem. 38:234-237.   DOI
19 Dennis, C. 1983. Post-harvest pathology of fruits and vegetables. Academic Press, London, UK. 264 pp.
20 Justice, M. C., Hsu, M.-J., Tse, B., Ku, T., Balkovec, J., Schmatz, D. and Nielsen, J. 1998. Elongation factor 2 as a novel target for selective inhibition of fungal protein synthesis. J. Biol. Chem. 273:3148-3151.   DOI
21 Liu, S.-Y., Lo, C.-T., Chen, C., Liu, M.-Y., Chen, J.-H. and Peng, K.-C. 2007. Efficient isolation of anthraquinone-derivatives from Trichoderma harzianum ETS 323. J. Biochem. Biophys. Methods 70:391-395.   DOI
22 Northover, J. and Zhou, T. 2002. Control of rhizopus rot of peaches with postharvest treatments of tebuconazole, fludioxonil, and Pseudomonas syringae. Can. J. Plant Pathol. 24:144-153.   DOI
23 Pascale, A., Vinale, F., Manganiello, G., Nigro, M., Lanzuise, S., Ruocco, M., Marra, R., Lombardi, N., Woo, S. L. and Lorito, M. 2017. Trichoderma and its secondary metabolites improve yield and quality of grapes. Crop Prot. 92:176-181.   DOI
24 Paster, N. and Bullerman, L. B. 1988. Mould spoilage and mycotoxin formation in grains as controlled by physical means. Int. J. Food Microbiol. 7:257-265.   DOI
25 Roberts, R. G. 1990. Postharvest biological control of gray mold of apple by Cryptococcus laurentii. Phytopathology 80:526-530.   DOI
26 Poole, P. R., Ward, B. G. and Whitaker, G. 1998. The effects of topical treatments with 6-pentyl-2-pyrone and structural analogues on stem end postharvest rots in kiwifruit due to Botrytis cinerea. J. Sci. Food Agric. 77:81-86.   DOI
27 Porter, N. 1985. Physicochemical and biophysical panel symposium biologically active secondary metabolites. Pestic. Sci. 16:422-427.   DOI
28 Qing, F. and Shiping, T. 2000. Postharvest biological control of Rhizopus rot of nectarine fruits by Pichia membranefaciens. Plant Dis. 84:1212-1216.   DOI
29 Scarselletti, R. and Faull, J. L. 1994. In vitro activity of 6-pentyl-α-pyrone, a metabolite of Trichoderma harzianum, in the inhibition of Rhizoctonia solani and Fusarium oxysporum f. sp. lycopersici. Mycol. Res. 98:1207-1209.   DOI
30 Salem, E. A., Youssef, K. and Sanzani, S. M. 2016. Evaluation of alternative means to control postharvest Rhizopus rot of peaches. Sci. Hortic. 198:86-90.   DOI
31 Tanaka, M., Moriguchi, T., Kizuka, M., Ono, Y., Miyakoshi, S.- I. and Ogita, T. 2002. Microbial hydroxylation of zofimarin, a sordarin-related antibiotic. J. Antibiot. 55:437-441.   DOI
32 Tang, B., Pan, H., Tang, W., Zhang, Q., Ding, L. and Zhang, F. 2012. Fermentation and purification of cellulase from a novel strain Rhizopus stolonifer var. reflexus TP-02. Biomass Bioenergy 36:366-372.   DOI
33 Zhang, H., Godana, E. A., Sui, Y., Yang, Q., Zhang, X. and Zhao, L. 2020. Biological control as an alternative to synthetic fungicides for the management of grey and blue mould diseases of table grapes: a review. Crit. Rev. Microbiol. 46:450-462.   DOI
34 Tripathi, P. and Dubey, N. K. 2004. Exploitation of natural products as an alternative strategy to control postharvest fungal rotting of fruit and vegetables. Postharvest Biol. Technol. 32:235-245.   DOI
35 Usall, J., Torres, R. and Teixido, N. 2016. Biological control of postharvest diseases on fruit: a suitable alternative? Curr. Opin. Food Sci. 11:51-55.   DOI
36 Wisniewski, M. E. and Wilson, C. L. 1992. Biological control of postharvest diseases of fruits and vegetables: recent advances. HortScience 27:94-98.   DOI