Browse > Article
http://dx.doi.org/10.5423/PPJ.OA.03.2020.0052

Suppression of Rice Stripe Virus Replication in Laodelphax striatellus Using Vector Insect-Derived Double-Stranded RNAs  

Fang, Ying (Department of Agricultural Biotechnology, College of Agriculture & Life Science, Seoul National University)
Choi, Jae Young (Department of Agricultural Biotechnology, College of Agriculture & Life Science, Seoul National University)
Park, Dong Hwan (Department of Agricultural Biotechnology, College of Agriculture & Life Science, Seoul National University)
Park, Min Gu (Department of Agricultural Biotechnology, College of Agriculture & Life Science, Seoul National University)
Kim, Jun Young (Department of Agricultural Biotechnology, College of Agriculture & Life Science, Seoul National University)
Wang, Minghui (Department of Agricultural Biotechnology, College of Agriculture & Life Science, Seoul National University)
Kim, Hyun Ji (Department of Agricultural Biotechnology, College of Agriculture & Life Science, Seoul National University)
Kim, Woo Jin (Department of Agricultural Biotechnology, College of Agriculture & Life Science, Seoul National University)
Je, Yeon Ho (Department of Agricultural Biotechnology, College of Agriculture & Life Science, Seoul National University)
Publication Information
The Plant Pathology Journal / v.36, no.3, 2020 , pp. 280-288 More about this Journal
Abstract
RNA interference (RNAi) has attracted attention as a promising approach to control plant viruses in their insect vectors. In the present study, to suppress replication of the rice stripe virus (RSV) in its vector, Laodelphax striatellus, using RNAi, dsRNAs against L. striatellus genes that are strongly upregulated upon RSV infection were delivered through a rice leaf-mediated method. RNAi-based silencing of peroxiredoxin, cathepsin B, and cytochrome P450 resulted in significant down regulation of the NS3 gene of RSV, achieving a transcriptional reduction greater than 73.6% at a concentration of 100 ng/μl and, possibly compromising viral replication. L. striatellus genes might play crucial roles in the transmission of RSV; transcriptional silencing of these genes could suppress viral replication in L. striatellus. These results suggest effective RNAi-based approaches for controlling RSV and provide insight into RSV-L. striatellus interactions.
Keywords
double-stranded RNA; Laodelphax striatellus; rice stripe virus; RNA interference;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Liu, W., Gray, S., Huo, Y., Li, L., Wei, T. and Wang, X. 2015. Proteomic analysis of interaction between a plant virus and its vector insect reveals new functions of hemipteran cuticular protein. Mol. Cell. Proteomics 14:2229-2242.   DOI
2 Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L. and Wold, B. 2008. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 5:621-628.   DOI
3 Ng, J. C. and Falk, B. W. 2006. Virus-vector interactions mediating nonpersistent and semipersistent transmission of plant viruses. Annu. Rev. Phytopathol. 44:183-212.   DOI
4 Patel, R. K. and Jain, M. 2012. NGS QC Toolkit: a toolkit for quality control of next generation sequencing data. PLoS One 7:e30619.   DOI
5 Pinheiro, P. V., Ghanim, M., Alexander, M., Rebelo, A. R., Santos, R. S., Orsburn, B. C., Gray, S. and Cilia, M. 2017. Host plants indirectly influence plant virus transmission by altering gut cysteine protease activity of aphid vectors. Mol. Cell. Proteomics 16(4 Suppl 1):S230-S243.   DOI
6 Premzl, A., Turk, V. and Kos, J. 2006. Intracellular proteolytic activity of cathepsin B is associated with capillary-like tube formation by endothelial cells in vitro. J. Cell. Biochem. 97:1230-1240.   DOI
7 Roberts, A. and Pachter, L. 2013. Streaming fragment assignment for real-time analysis of sequencing experiments. Nat. Methods 10:71-73.   DOI
8 Shiba, H., Uchida, D., Kobayashi, H. and Natori, M. 2001. Involvement of cathepsin B- and L-like proteinases in silk gland histolysis during metamorphosis of Bombyx mori. Arch. Biochem. Biophys. 390:28-34.   DOI
9 Sim, S., Ramirez, J. L. and Dimopoulos, G. 2012. Dengue virus infection of the Aedes aegypti salivary gland and chemosensory apparatus induces genes that modulate infection and blood-feeding behavior. PLoS Pathog. 8:e1002631.   DOI
10 Storr, S. J., Woolston, C. M., Zhang, Y. and Martin, S. G. 2013. Redox environment, free radical, and oxidative DNA damage. Antioxid. Redox Signal. 18:2399-2408.   DOI
11 Stram, Y. and Kuzntzova, L. 2006. Inhibition of viruses by RNA interference. Virus Genes 32:299-306.   DOI
12 Toriyama, S. 1986. Rice stripe virus: prototype of a new group of viruses that replicate in plants and insects. Microbiol. Sci. 3:347-351.
13 Van Rij, R. P., Saleh, M.-C., Berry, B., Foo, C., Houk, A., Antoniewski, C. and Andino, R. 2006. The RNA silencing endonuclease Argonaute 2 mediates specific antiviral immunity in Drosophila melanogaster. Genes Dev. 20:2985-2995.   DOI
14 Wang, X.-H., Aliyari, R., Li, W.-X., Li, H.-W., Kim, K., Carthew, R., Atkinson, P. and Ding, S.-W. 2006. RNA interference directs innate immunity against viruses in adult Drosophila. Science 312:452-454.   DOI
15 Wei, T.-Y., Yang, J.-G., Liao, F.-L., Gao, F.-L., Lu, L.-M., Zhang, X.-T., Li, F., Wu, Z.-J., Lin, Q.-Y., Xie, L.-H. and Lin, H.-X. 2009. Genetic diversity and population structure of rice stripe virus in China. J. Gen. Virol. 90:1025-1034.   DOI
16 Yang, X.-M., Hou, L.-J., Dong, D.-J., Shao, H.-L., Wang, J.-X. and Zhao, X.-F. 2006. Cathepsin B-like proteinase is involved in the decomposition of the adult fat body of Helicoverpa armigera. Arch. Insect Biochem. Physiol. 62:1-10.   DOI
17 Wu, W., Zheng, L., Chen, H., Jia, D., Li, F. and Wei, T. 2014. Nonstructural protein NS4 of Rice Stripe Virus plays a critical role in viral spread in the body of vector insects. PLoS ONE 9:e88636.   DOI
18 Xu, Y., Huang, L., Fu, S., Wu, J. and Zhou, X. 2012. Population diversity of rice stripe virus-derived siRNAs in three different hosts and RNAi-based antiviral immunity in Laodelphgax striatellus. PLoS ONE 7:e46238.   DOI
19 Yang, M., Xu, Z., Zhao, W., Liu, Q., Li, Q., Lu, L., Liu, R., Zhang, X. and Cui, F. 2018. Rice stripe virus-derived siRNAs play different regulatory roles in rice and in the insect vector Laodelphax striatellus. BMC Plant Biol. 18:219.   DOI
20 An, S. B., Choi, J. Y., Lee, S. H., Fang, Y., Kim, J. H., Park, D. H., Park, M. G., Woo, R. M., Kim, W. J. and Je, Y. H. 2017. Silencing of rice stripe virus in Laodelphax striatellus using virus-derived double-stranded RNAs. J. Asia-Pac. Entomol. 20:695-698.   DOI
21 Zhao, X.-F., An, X.-M., Wang, J.-X., Dong, D.-J., Du, X.-J., Sueda, S. and Kondo, H. 2005. Expression of the Helicoverpa cathepsin b-like proteinase during embryonic development. Arch. Insect Biochem. Physiol. 58:39-46.   DOI
22 Zhao, W., Lu, L., Yang, P., Cui, N., Kang, L. and Cui, F. 2016a. Organ-specific transcriptome response of the small brown planthopper toward rice stripe virus. Insect Biochem. Mol. Biol. 70:60-72.   DOI
23 Zhao, W., Yang, P., Kang, L. and Cui, F. 2016b. Different pathogenicities of Rice stripe virus from the insect vector and from viruliferous plants. New Phytol. 210:196-207.   DOI
24 Zuzarte-Luis, V., Montero, J. A., Kawakami, Y., Izpisua-Belmonte, J. C. and Hurle, J. M. 2007. Lysosomal cathepsins in embryonic programmed cell death. Dev. Biol. 301:205-217.   DOI
25 de Haro, L. A., Dumon, A. D., Mattio, M. F., Arguello Caro, E. B., Llauger, G., Zavallo, D., Blanc, H., Mongelli, V. C., Truol, G., Saleh, M.-C., Asurmendi, S. and del Vas, M. 2017. Mal de Rio Cuarto virus infection triggers the production of distinctive viral-derived siRNA profiles in wheat and its planthopper vector. Front. Plant Sci. 8:766.   DOI
26 Bass, C., Carvalho, R. A., Oliphant, L., Puinean, A. M., Field, L. M., Nauen, R., Williamson, M. S., Moores, G. and Gorman, K. 2011. Overexpression of a cytochrome P450 monooxygenase, CYP6ER1, is associated with resistance to imidacloprid in the brown planthopper, Nilaparvata lugens. Insect Mol. Biol. 20:763-773.   DOI
27 Bolger, A. M., Lohse, M. and Usadel, B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114-2120.   DOI
28 David, J.-P., Ismail, H. M., Chandor-Proust, A. and Paine, M. J. I. 2013. Role of cytochrome P450s in insecticide resistance: impact on the control of mosquito-borne diseases and use of insecticides on Earth. Philos. Trans. R. Soc. Lond. B Biol. Sci. 368:20120429.   DOI
29 Fang, Y., Choi, J. Y., Lee, S. H., Kim, J. H., Park, D. H., Park, M. G., Woo, R. M., Lee, B. R., Kim, W. J., Li, S. and Je, Y. H. 2017. RNA interference of E75 nuclear receptor gene suppresses transmission of rice stripe virus in Laodelphax striatellus. J. Asia-Pac. Entomol. 20:1140-1144.   DOI
30 Elzaki, M. E. A., Zhang, W., Feng, A., Qiou, X., Zhao, W. and Han, Z. 2016. Constitutive overexpression of cytochrome P450 associated with imidacloprid resistance in Laodelphax striatellus (Fallen). Pest Manag. Sci. 72:1051-1058.   DOI
31 Feyereisen, R. 2015. Insect P450 inhibitors and insecticides: challenges and opportunities. Pest Manag. Sci. 71:793-800.   DOI
32 Galiana-Arnoux, D., Dostert, C., Schneemann, A., Hoffmann, J. A. and Imler, J.-L. 2006. Essential function in vivo for Dicer-2 in host defense against RNA viruses in drosophila. Nat. Immunol. 7:590-597.   DOI
33 Grabherr, M. G., Haas, B. J., Yassour, M., Levin, J. Z., Thompson, D. A., Amit, I., Adiconis, X., Fan, L., Raychowdhury, R., Zeng, Q., Chen, Z., Mauceli, E., Hacohen, N., Gnirke, A., Rhind, N., di Palma, F., Birren, B. W., Nusbaum, C., Lindblad-Toh, K., Friedman, N. and Regev, A. 2011. Fulllength transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29:644-652.   DOI
34 Hamamatsu, C., Toriyama, S., Toyoda, T. and Ishihama, A. 1993. Ambisense coding strategy of the rice stripe virus genome: in vitro translation studies. J. Gen. Virol. 74:1125-1131.   DOI
35 Hibino, H. 1996. Biology and epidemiology of rice viruses. Annu. Rev. Phytopathol. 34:249-274.   DOI
36 Hogenhout, S. A., Ammar, E.-D., Whitfield, A. E. and Redinbaugh, M. G. 2008. Insect vector interactions with persistently transmitted viruses. Annu. Rev. Phytopathol. 46:327-359.   DOI
37 Karatolos, N., Williamson, M. S., Denholm, I., Gorman, K., Ffrench-Constant, R. H. and Bass, C. 2012. Over-expression of a cytochrome P450 is associated with resistance to pyriproxyfen in the greenhouse whitefly Trialeurodes vaporariorum. PLoS ONE 7:e31077.   DOI
38 Ishikawa, K., Omura, T. and Hibino, H. 1989. Morphological characteristics of rice stripe virus. J. Gen. Virol. 70:3465-3468.   DOI
39 Jaattela, M. and Tschopp, J. 2003. Caspase-independent cell death in T lymphocytes. Nat. Immunol. 4:416-423.   DOI
40 Kanakala, S. and Ghanim, M. 2016. RNA interference in insect vectors for plant viruses. Viruses 8:329.   DOI
41 Lamb, D. C., Lei, L., Warrilow, A. G. S., Lepesheva, G. I., Mullins, J. G. L., Waterman, M. R. and Kelly, S. L. 2009. The first virally encoded cytochrome p450. J. Virol. 83:8266-8269.   DOI
42 Langmead, B. and Salzberg, S. L. 2012. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9:357-359.   DOI
43 Lee, J. H., Choi, J. Y., Tao, X. Y., Kim, J. S., Kim, W. and Je, Y. H. 2013. Transcriptome analysis of the small brown planthopper, Laodelphax striatellus carrying Rice stripe virus. Plant Pathol. J. 29:330-337.   DOI
44 Lee, K. S., Kim, S. R., Park, N. S., Kim, I., Kang, P. D., Sohn, B. H., Choi, K. H., Kang, S. W., Je, Y. H., Lee, S. M., Sohn, H. D. and Jin, B. R. 2005. Characterization of a silkworm thioredoxin peroxidase that is induced by external temperature stimulus and viral infection. Insect Biochem. Mol. Biol. 35:73-84.   DOI
45 Liu, B., Qin, F., Liu, W. and Wang, X. 2016. Differential proteomics profiling of the ova between healthy and Rice stripe virus-infected female insects of Laodelphax striatellus. Sci. Rep. 6:27216.   DOI