Browse > Article
http://dx.doi.org/10.5423/PPJ.OA.04.2018.0073

Antibody-Mediated Resistance to Rhizomania Disease in Sugar Beet Hairy Roots  

Jafarzade, M. (Department of Plant Biotechnology, National Institute of Genetic Engineering and Biotechnology)
Ramezani, M. (Department of Plant Biotechnology, National Institute of Genetic Engineering and Biotechnology)
Hedayati, F. (Department of Plant Biotechnology, National Institute of Genetic Engineering and Biotechnology)
Mokhtarzade, Z. (Department of Plant Biotechnology, National Institute of Genetic Engineering and Biotechnology)
Zare, B. (Department of Plant Biotechnology, National Institute of Genetic Engineering and Biotechnology)
Sabet, M.S. (Department of Agriculture, Tarbiat Modares University)
Norouzi, P. (Sugar Beet Seed Institute, Agricultural Research, Education and Extension Organization (AREEO))
Malboobi, M.A. (Department of Plant Biotechnology, National Institute of Genetic Engineering and Biotechnology)
Publication Information
The Plant Pathology Journal / v.35, no.6, 2019 , pp. 692-697 More about this Journal
Abstract
Agrobacterium rhizogenes-mediated transformation of sugar beet hairy roots expressing single-chain variable fragment (scFv) was exploited to evaluate the efficacy of four antibody-based constructs for interfering with the Beet necrotic yellow vein virus infection. The scFv specific to a major coat protein of virus, p21, was targeted to various cellular compartments including the cytosol (pIC and pICC constructs), apoplast (pIA), and mitochondrion (pIM). After mechanical virus inoculation, most of the hairy root clones expressing scFv in the cytosol displayed low virus titers while the majority of transgenic hairy root clones accumulated antibody in outer membrane of mitochondria or apoplast were infected. This hairy root system provided an efficient and rapid approach to initially investigating root disease resistance like rhizomania prior to transform whole recalcitrant plants such as sugar beet.
Keywords
Agrobacterium rhizogenes; Beta vulgaris; BNYVV; rhizomania; scFv;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Zare, B., Niazi, A., Sattari, R., Aghelpasand, H., Zamani, K., Sabet, M. S., Moshiri, F., Darabie, S., Daneshvar, M. H., Norouzi, P., Kazemi-Tabar, S. K., Khoshnami, M. and Malboobi, M. A. 2015. Resistance against rhizomania disease via RNA silencing in sugar beet. Plant Pathol. 64:35-42.   DOI
2 Zimmermann, S., Schillberg, S., Liao, Y.-C. and Fisher, R. 1998. Intracellular expression of TMV-specific single-chain Fv fragments leads to improved virus resistance in shape Nicotiana tabacum. Mol. Breed. 4:369-379.   DOI
3 Tamada, T., Kondo, H. and Chiba, S. 2016. Genetic diversity of beet necrotic yellow vein virus. In: Rhizomania, eds. by E. Biancardi and T. Tamada, pp. 109-131. Springer, Berlin/Heidelberg, Germany.
4 Asher, M. J. C. and Blunt, S. J. 1987. The ecological requirements of Polymyxa betae. In: Proceedings of the 50th Winter Congress of the International Institute for Sugar Beet Research, pp. 45-55. Brussels, Belgium.
5 Ayadi, M., Bouaziz, D., Nouri-Ellouz, O., Rouis, S., Drira, N. and Gargouri-Bouzid, R. 2012. Efficient resistance to Potato virus Y infection conferred by cytosolic expression of anti-viral protease single-chain variable fragment antibody in transgenic potato plants. J. Plant Pathol. 94:561-569.
6 Clark, M. F. and Adams, A. N. 1977. Characteristics of the microplate method of enzyme-linked immunosorbent assay for the detection of plant viruses. J. Gen. Virol. 34:475-483.   DOI
7 Bouaziz, D., Ayadi, M., Bidani, A., Rouis, S., Nouri-Ellouz, O., Jellouli, R., Drira, N. and Gargouri-Bouzid, R. 2009. A stable cytosolic expression of VH antibody fragment directed against PVY NIa protein in transgenic potato plant confers partial protection against the virus. Plant Sci. 176:489-496.   DOI
8 Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248-254.   DOI
9 Cervera, M., Esteban, O., Gil, M., Gorris, M. T., Martinez, M. C., Pena, L. and Cambra, M. 2010. Transgenic expression in citrus of single-chain antibody fragments specific to Citrus tristeza virus confers virus resistance. Transgenic Res. 19:1001-1015.   DOI
10 De Jaeger, G., Buys, E., Eeckhout, D., De Wilde, C., Jacobs, A., Kapila, J., Angenon, G., Van Montagu, M., Gerats, T. and Depicker, A. 1999. High level accumulation of single-chain variable fragments in the cytosol of transgenic Petunia hybrida. Eur. J. Biochem. 259:426-434.   DOI
11 Erhardt, M., Dunoyer, P., Guilley, H., Richards, K., Jonard, G. and Bouzoubaa, S. 2001. Beet necrotic yellow vein virus particles localize to mitochondria during infection. Virology 286:256-262.   DOI
12 Fecker, L. F., Koenig, R. and Obermeier, C. 1997. Nicotiana benthamiana plants expressing beet necrotic yellowvein virus (BNYVV) coat protein-specific scFv are partiallyprotected against the establishment of the virus inthe early stages of infection and its pathogenic effectsin the late stages of infection. Arch. Virol. 142:1857-1863.   DOI
13 Holsters, M., De Waele, D., Depicker, A., Messens, E., Van Montagu, M. and Schell, J. 1978. Transfection and transformation of Agrobacterium tumefaciens. Mol. Gen. Genet. MGG 163:181-187.   DOI
14 Gargouri-Bouzid, R., Jaoua, L., Rouis, S., Saidi, M. N., Bouaziz, D. and Ellouz, R. 2006. PVY-resistant transgenic potato plants expressing an anti-NIa protein scFv antibody. Mol. Biotechnol. 33:133-140.   DOI
15 Ghannam, A., Kumari, S., Muyldermans, S. and Abbady, A. Q. 2015. Camelid nanobodies with high affinity for broad bean mottle virus: a possible promising tool to immunomodulate plant resistance against viruses. Plant Mol. Biol. 87:355-369.   DOI
16 Hemmer, C., Djennane, S., Ackerer, L., Hleibieh, K., Marmonier, A., Gersch, S., Garcia, S., Vigne, E., Komar, V., Perrin, M., Gertz, C., Belval, L., Berthold, F., Monsion, B., Schmitt-Keichinger, C., Lemaire, O., Lorber, B., Gutierrez, C., Muyldermans, S., Demangeat, G. and Ritzenthaler, C. 2018. Nanobody-mediated resistance to Grapevine fanleaf virus in plants. Plant Biotechnol. J. 16:660-671.   DOI
17 Jahromi, Z. M., Salmanian, A. H., Rastgoo, N. and Arbabi, M. 2009. Isolation of BNYVV coat protein-specific single chain Fv from a mouse phage library antibody. Hybridoma 28:305-313.   DOI
18 Lennefors, B.-L., Savenkov, E. I., Bensefelt, J., Wremerth-Weich, E., van Roggen, P., Tuvesson, S., Valkonen, J. P. T. and Gielen, J. 2006. dsRNA-mediated resistance to Beet Necrotic Yellow Vein Virus infections in sugar beet (Beta vulgaris L. ssp. vulgaris). Mol. Breed. 18:313-325.   DOI
19 Nickel, H., Kawchuk, L., Twyman, R. M., Zimmermann, S., Junghans, H., Winter, S., Fischer, R. and Prufer, D. 2008. Plantibody-mediated inhibition of the Potato leafroll virus P1 protein reduces virus accumulation. Virus Res. 136:140-145.   DOI
20 McGrann, G. R., Grimmer, M. K., Mutasa-Gottgens, E. S. and Stevens, M. 2009. Progress towards the understanding and control of sugar beet rhizomania disease. Mol. Plant Pathol. 10:129-141.   DOI
21 Pavli, O. I., Panopoulos, N. J., Goldbach, R. and Skaracis, G. N. 2010. BNYVV-derived dsRNA confers resistance to rhizomania disease of sugar beet as evidenced by a novel transgenic hairy root approach. Transgenic Res. 19:915-922.   DOI
22 Prins, M., Lohuis, D., Schots, A. and Goldbach, R. 2005. Phage display-selected single-chain antibodies confer high levels of resistance against Tomato spotted wilt virus. J. Gen. Virol. 86:2107-2113.   DOI
23 Safarnejad, M. R., Jouzani, G. S., Tabatabaie, M., Twyman, R. M. and Schillberg, S. 2011. Antibody-mediated resistance against plant pathogens. Biotechnol. Adv. 29:961-971.   DOI
24 Schouten, A., Roosien, J., de Boer, J. M., Wilmink, A., Rosso, M.-N., Bosch, D., Stiekema, W. J., Gommers, F. J., Bakker, J. and Schots, A. 1997. Improving scFv antibody expression levels in the plant cytosol. FEBS Lett. 415:235-241.   DOI
25 Weigel, D. and Glazebrook, J. 2009. Dellaporta miniprep for plant DNA isolation. Cold Spring Harb. Protoc. 2009:pdb. prot5178.
26 Schouten, A., Roosien, J., van Engelen, F. A., de Jong, G. A. M. I., Borst-Vrenssen, A. W. M. T., Zilverentant, J. F., Bosch, D., Stiekema, W. J., Gommers, F. J., Schots, A. and Bakker, J. 1996. The C-terminal KDEL sequence increases the expression level of a single-chain antibody designed to be targeted to both the cytosol and the secretory pathway in transgenic tobacco. Plant Mol. Biol. 30:781-793.   DOI
27 Spiegel, H., Schillberg, S., Sack, M., Holzem, A., Nahring, J., Monecke, M., Liao, Y.-C. and Fischer, R. 1999. Accumulation of antibody fusion proteins in the cytoplasm and ER of plant cells. Plant Sci.149:63-71.   DOI
28 Tavladoraki, P., Benvenuto, E., Trinca, S., De Martinis, D., Cattaneo, A. and Galeffi, P. 1993. Transgenic plants expressing a functional single-chain Fv antibody are specifically protected from virus attack. Nature 366:469-472.   DOI
29 Valentin, C., Dunoyer, P., Vetter, G., Schalk, C., Dietrich, A. and Bouzoubaa, S. 2005. Molecular basis for mitochondrial localization of viral particles during Beet necrotic yellow vein virus infection. J. Virol. 79:9991-10002.   DOI
30 Villani, M. E., Roggero, P., Bitti, O., Benvenuto, E. and Franconi, R. 2005. Immunomodulation of cucumber mosaic virus infection by intrabodies selected in vitro from a stable singleframework phage display library. Plant Mol Biol. 58:305-316.   DOI
31 Yajima, W., Verma, S. S., Shah, S., Rahman, M. H., Liang, Y. and Kav, N. N. V. 2010. Expression of anti-sclerotinia scFv in transgenic Brassica napus enhances tolerance against stem rot. New Biotechnol. 27:816-821.   DOI