Browse > Article
http://dx.doi.org/10.5423/PPJ.OA.09.2018.0173

A Duplex PCR Assay for Rapid Detection of Phytophthora nicotianae and Thielaviopsis basicola  

Liu, Na (College of Life Sciences, Henan Agricultural University)
Jiang, Shijun (College of Plant Protection, Henan Agricultural University)
Feng, Songli (College of Life Sciences, Henan Agricultural University)
Shang, Wenyan (College of Life Sciences, Henan Agricultural University)
Xing, Guozhen (College of Life Sciences, Henan Agricultural University)
Qiu, Rui (Key Laboratory for green preservation & control of tobacco diseases and pests in Huanghuai Area, Tobacco Research Institute of Henan Academy of Agricultural Science)
Li, Chengjun (Key Laboratory for green preservation & control of tobacco diseases and pests in Huanghuai Area, Tobacco Research Institute of Henan Academy of Agricultural Science)
Li, Shujun (Key Laboratory for green preservation & control of tobacco diseases and pests in Huanghuai Area, Tobacco Research Institute of Henan Academy of Agricultural Science)
Zheng, Wenming (College of Life Sciences, Henan Agricultural University)
Publication Information
The Plant Pathology Journal / v.35, no.2, 2019 , pp. 172-177 More about this Journal
Abstract
A duplex PCR method was developed for simultaneous detection and identification of tobacco root rot pathogens Phytophthora nicotianae and Thielaviopsis basicola. The specific primers for P. nicotianae were developed based on its internal transcribed spacer (ITS) regions of ribosomal gene, ras gene and hgd gene, while the specific primers for T. basicola were designed based on its ITS regions and ${\beta}$-tubulin gene. The specificity of the primers was determined using isolates of P. nicotianae, T. basicola and control samples. The results showed that the target pathogens could be detected from diseased tobacco plants by a combination of the specific primers. The sensitivity limitation was $100fg/{\mu}l$ of pure genomic DNA of the pathogens. This new assay can be applied to screen out target pathogens rapidly and reliably in one PCR and will be an important tool for the identification and precise early prediction of these two destructive diseases of tobacco.
Keywords
duplex PCR; molecular detection; Phytophthora nicotianae; Thielaviopsis basicola; tobacco;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Kong, P., Hong, C., Jeffers, S. N. and Richardson, P. A. 2003. A Species-specific polymerase chain reaction assay for rapid detection of Phytophthora nicotianae in irrigation water. Phytopathology 93:822-831.   DOI
2 Almario, J., Kyselkova, M., Kopecky, J., Sagova-Mareckova, M., Muller, D., Grundmann, G. L. and Moenne-Loccoz, Y. 2013. Assessment of the relationship between geologic origin of soil, rhizobacterial community composition and soil receptivity to tobacco black root rot in Savoie region (France). Plant Soil 371:397-408.   DOI
3 Anderson, T. R. and Welacky, T. W. 1988. Populations of Thielaviopsis basicola in burley tobacco field soils and the relationship between soil inoculum concentration and severity of disease on tobacco and soybean seedlings. Can. J. Plant Pathol. 10:246-251.   DOI
4 Bian, C. H., Ding, Y. Q., Zhao, S. M., Li, S. J. and Kang, Y. B. 2017. Molecular identification and pathogenicity analysis of Thielaviopsis basicola in Henan Province. Tobacco Sci. Technol. 50:8-14 (in Chinese).
5 Blair, J. E., Coffey, M. D., Park, S. Y., Geiser, D. M. and Kang, S. 2008. A multi-locus phylogeny for Phytophthora utilizing markers derived from complete genome sequences. Fungal Genet. Biol. 45:266-277.   DOI
6 Lacourt, I. and Duncan, J. M. 1997. Specific detection of Phytophthora nicotianae using the polymerase chain reaction and primers based on the DNA sequence of its elictin gene ParA1. Eur. J. Plant Pathol. 103:73-83.   DOI
7 Leclerc-Potvin, C., Balmas, V., Charest, P. M. and Jabaji-Hare, S. 1999. Development of reliable molecular markers to detect non-pathogenic binucleate Rhizoctonia isolates (AG-G) using PCR. Mycol. Res. 103:1165-1172.   DOI
8 Levesque, C. A., Harlton, C. E. and de Cock, A. W. 1998. Identification of some oomycetes by reverse dot blot hybridization. Phytopathology 88:213-222.   DOI
9 Li, B., Liu, P., Xie, S., Yin, R., Weng, Q. and Chen, Q. 2015. Specific and sensitive detection of Phytophthora nicotianae by nested PCR and loop-mediated isothermal amplification assays. J. Phytopathol. 163:185-193.   DOI
10 Li, M. Z., Asano, T., Suga, H. and Kageyama, K. 2011. A multiplex PCR for the detection of Phytophthora nicotianae and P. cactorum, and a survey of their occurrence in strawberry production areas of Japan. Plant Dis. 95:1270-1278.   DOI
11 Markoulatos, P., Siafakas, N. and Moncany, M. 2002. Multiplex polymerase chain reaction: a practical approach. J. Clin. Lab. Anal. 16:47-51.   DOI
12 Meng, J. and Wang, Y. 2010. Rapid Detection of Phytophthora nicotianae in infected tobacco tissues and soil samples based on its Ypt 1 gene. J. Phytopathol. 158:1-7.   DOI
13 Raeder, U. and Broda, P. 1985. Rapid preparation of DNA from filamentous fungi. Lett. Appl. Microbiol. 1:17-20.   DOI
14 Grasko, J. M., Hooper, A. J., Brown, J. W., Mcknight, C. J. and Burnett, J. R. 2009. A novel missense HGD gene mutation, K57N, in a patient with alkaptonuria. Clin. Chim. Acta 403:254-256 (in Chinese).   DOI
15 Chen, R. T., Zhu, X. C., Wang, Z. J., Guo, Z. Y., Dong, H. S., Wang, L. Z., Liu, Y. R. and Shi, J. K. 1997. A report of investigating and studying tobacco infectious diseases of 16 ma in tobacco producing provinces (regions) in China. Chin. Tob. Sci. 18:1-7 (in Chinese).
16 Cheng, Y., Wang, W., Yao, J., Huang, L., Voegele, R. T., Wang, X. and Kang, Z. 2016. Two distinct Ras genes from Puccinia striiformis exhibit differential roles in rust pathogenicity and cell death. Environ. Microbiol. 18:3910-3922.   DOI
17 Cullen, D. W., Lees, A. K., Toth, I. K. and Duncan, J. M. 2001. Conventional PCR and real-time quantitative PCR detection of Helminthosporium solani in soil and on potato tubers. Eur. J. Plant Pathol. 107:387-398.   DOI
18 Dodd, S. L., Hill, R. A. and Stewart, A. 2004. A duplex-PCR bioassay to detect a Trichoderma virens biocontrol isolate in non-sterile soil. Soil Biol. Biochem. 36:1955-1965.   DOI
19 Geldenhuis, M. M., Roux, J., Wingfield, M. J. and Wingfield, B. D. 2004. Development of polymorphic markers for the root pathogen Thielaviopsis basicola using ISSR-PCR. Mol. Ecol. Notes 4:547-550.   DOI
20 Grote, D., Olmos, A., Kofoet, A., Tuset, J. J., Bertolini, E. and Cambra, M. 2002. Specific and sensitive detection of Phytophthora nicotianae by simple and nested-PCR. Eur. J. Plant Pathol. 108:197-207.   DOI
21 Guiltinan, M. J., Velten, J., Bustos, M. M., Cyr, R. J., Schell, J. and Fosket, D. E. 1987. The expression of a chimeric soybean beta-tubulin gene in tobacco. Mol. Genet. Genomics 207:328-334.   DOI
22 Sudan, V., Jaiswal, A. K., Parashar, R. and Shanker, D. 2015. A duplex PCR based assay for simultaneous detection of Trypanosoma evansi and Theileria annulata infections in water buffaloes. Trop. Anim. Health Prod. 47:915-919.   DOI
23 Haudenshield, J. S., Song, J. Y. and Hartman, G. L. 2017. A novel, multiplexed, probe-based quantitative PCR assay for the soybean root- and stem-rot pathogen, Phytophthora sojae, utilizes its transposable element. PloS One 12:e0176567.   DOI
24 Huang, J. L., Wu, J. Z., Li, C. J., Xiao, C. G. and Wang, G. X. 2010. Detection of Phytophthora nicotianae in soil with realtime quantitative PCR. J. Phytopathol. 158:15-21.   DOI
25 Ippolito, A., Schena, L. and Nigro, F. 2002. Detection of Phytophthora nicotianae and P. citrophthora in citrus roots and soils by nested PCR. Eur. J. Plant Pathol. 108:855-868.   DOI
26 Shew, H. D. 1985. Response of Phytophthora parasitica var. nicotianae to metalaxyl exposure. Plant Dis. 69:559-562.   DOI
27 Shew, H. D. 1987. Effect of host resistance on spread of Phytophthora parasitica var. nicotianae and subsequent development of tobacco black shank under field conditions. Phytopathology 77:1090-1093.   DOI
28 Tooley, P. W., Bunyard, B. A., Carras, M. M. and Hatziloukas, E. 1997. Development of PCR primers from internal transcribed spacer region 2 for detection of Phytophthora species infecting potatoes. Appl. Environ. Microbiol. 63:1467-1475.   DOI
29 Xie, Y. H., Zhang, Y. G., Zhu, L. Q., You, D. G. and Lu, Y. 2015. Research advances in integrated management of tobacco black shank. Curr. Biotechnol. 2015:41-46 (in Chinese).
30 Zhang, X. G., Zheng, G. S., Han, H. Y., Han, W., Shi, C. K. and Chang, C. J. 2008. RAPD PCR for diagnosis of Phytophthora parasitica var. nicotianae isolates which cause black shank on tobacco. J. Phytopathol. 149:569-574.
31 Zhu, C. X., Wang, Y. T. and Wang, Z. F. 2002. Tobacco diseases of China. China Agriculture Press, Beijing, China. 350 pp (in Chinese).