Browse > Article
http://dx.doi.org/10.5423/PPJ.OA.07.2018.0132

Antimicrobial Activity of Various Parts of Tomato Plants Varied with Different Solvent Extracts  

Kim, Dong Sub (Department of Plant Science, Seoul National University)
Kwack, Yurina (Division of EcoDivision of Eco-friendly Horticulture, Yonam College)
Lee, Jung Heon (Department of Plant Science, Seoul National University)
Chun, Changhoo (Department of Plant Science, Seoul National University)
Publication Information
The Plant Pathology Journal / v.35, no.2, 2019 , pp. 149-155 More about this Journal
Abstract
The antimicrobial activity of acetone, hexane, dichloromethane, and methanol extracts from leaves, stems, immature green fruits, and red fruits of tomato plants was examined against six phytopathogens. The minimum inhibitory concentration (MIC) of the acetonic extracts from these four plant parts was lower than that of the other solvents. Among the acetonic extracts, tomato leaves had a lower MIC than the other tomato parts. The acetonic extract from tomato leaves was therefore selected as a source of antimicrobial substances. The acetonic extract from tomato leaves inhibited mycelial growth of Fusarium oxysporum f. sp. lycopersici, Glomerella cingulata, and Rhizoctonia solani. Mycelial growth of R. solani treated with acetone extract from leaves showed more susceptibility than the other phytopathogens. Using 0.31 mg/ml of the acetonic extract from leaves, mycelial growth of R. solani on days 1, 2, and 3 decreased by 50.0, 52.1, and 64.0%, respectively, compared with acetone solvent treatment. The antimicrobial compounds effective against R. solani were identified as linolenic acid and caffeic acid by bioautography and GC-MS. These two compounds were used to treat six phytopathogens to confirm their antimicrobial activities. Linolenic acid inhibited mycelial growth of R. solani, while caffeic acid showed only slight antimicrobial activity. Results indicated that we propose extracts from tomato leaves which included antimicrobial compounds may provide a new lead in the pursuit of new biological sources of agrochemical candidates.
Keywords
caffeic acid; linolenic acid; Rhizoctonia solani;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Weidenborner, M., Hindorf, H., Jha, H. C., Tsotsonos, P. and Egge, H. 1990. Antifungal activity of isoflavonoids in different reduced stages on Rhizoctonia solani and Sclerotium rolfsii. Phytochemistry 29:801-803.   DOI
2 Abdel-Motaal, F. F., El-Zayat, S. A., Kosaka, Y., El-Sayed, M. A., Kashima, R., Maeda, Y., Nassar, M. S. M. and Ito, S. 2010. Antifungal activities of hyoscyamine and scopolamine against two major rice pathogens: Magnaporthe oryzae and Rhizoctonia solani. J. Gen. Plant Pathol. 76:102-111.   DOI
3 Al-Mughrabi, K., Aburjai, T. A., Anfoka, G. H. and Shahrour, W. 2001. Antifungal activity of olive cake extracts. Phytopathol. Mediterr. 40:240-244.
4 Bajpai, V. K., Shukla, S. and Kang, S. C. 2008. Chemical composition and antifungal activity of essential oil and various extract of Silene armeria L. Bioresour. Technol. 99:8903-8908.   DOI
5 Castillo, F., Hernandez, D., Gallegos, G., Mendez, M., Rodrîguez, R., Reyes, A. and Aguilar, C. N. 2010. In vitro antifungal activity of plant extracts obtained with alternative organic solvents against Rhizoctonia solani Kuhn. Ind. Crops Prod. 32:324-328.   DOI
6 Conconi, A., Miquel, M., Browse, J. A. and Ryan, C. A. 1996. Intracellular levels of free linolenic and linoleic acids increase in tomato leaves in response to wounding. Plant Physiol. 111:797-803.   DOI
7 Hamberg, M. 1999. An epoxy alcohol synthase pathway in higher plants: biosynthesis of antifungal trihydroxy oxylipins in leaves of potato. Lipids 34:1131-1142.   DOI
8 Jayaraman, S., Manoharan, M. S. and Illanchezian, S. 2008. Invitro antimicrobial and antitumor activities of Stevia rebaudiana (Asteraceae) leaf extracts. Trop. J. Pharm. Res. 7:1143-1149.   DOI
9 Iijima, Y., Nakamura, Y., Ogata, Y., Tanaka, K., Sakurai, N., Suda, K., Suzuki, T., Suzuki, H., Okazaki, K., Kitayama, M., Kanaya, S., Aoki, K. and Shibata, D. 2008. Metabolite annotations based on the integration of mass spectral information. Plant J. 54:949-962.   DOI
10 Jasso de Rodriguez, D. J., Hernandez-Castillo, D., Angulo-Sanchez, J. L., Rodriguez-Garcia, R., Villarreal Quintanilla, J. A. and Lira-Saldivar, R. H. 2007. Antifungal activity in vitro of Flourensia spp. extracts on Alternaria sp., Rhizoctonia solani, and Fusarium oxysporum. Ind. Crops Prod. 25:111-116.   DOI
11 Masoko, P., Picard, J. and Eloff, J. N. 2005. Antifungal activities of six South African Terminalia species (Combretaceae). J. Ethnopharmacol. 99:301-308.   DOI
12 Kim, D. S., Na, H., Kwack, Y. and Chun, C. 2014. Secondary metabolite profiling in various parts of tomato plants. Korean J. Hortic. Sci. Technol. 32:252-260.   DOI
13 Kordali, S., Cakir, A., Ozer, H., Cakmakci, R., Kesdek, M. and Mete, E. 2008. Antifungal, phytotoxic and insecticidal properties of essential oil isolated from Turkish Origanum acutidens and its three components, carvacrol, thymol and p-cymene. Bioresour. Technol. 99:8788-8795.   DOI
14 Krygier, K., Sosulski, F. and Hogge, L. 1982. Free, esterified, and insoluble-bound phenolic acids. 1. Extraction and purification procedure. J. Agric. Food Chem. 30:330-334.   DOI
15 Kuo, P. C., Lin, T. C., Yang, C. W., Lin, C. L., Chen, C. F. and Huang, J. W. 2010. Bioactive saponin from tea seed pomace with inhibitory effects against Rhizoctonia solani. J. Agric. Food Chem. 58:8618-8622.   DOI
16 Mahlo, S. M., McGaw, L. J. and Eloff, J. N. 2010. Antifungal activity of leaf extracts from South African trees against plant pathogens. Crop Prot. 29:1529-1533.   DOI
17 Moco, S., Bino, R. J., Vorst, O., Verhoeven, H. A., de Groot, J., van Beek, T. A., Vervoort, J. and de Vos, C. H. 2006. A liquid chromatography-mass spectrometry-based metabolome database for tomato. Plant Physiol. 141:1205-1218.   DOI
18 Moco, S., Capanoglu, E., Tikunov, Y., Bino, R. J., Boyacioglu, D., Hall, R. D., Vervoort, J. and de Vos, C. H. 2007. Tissue specialization at the metabolite level is perceived during the development of tomato fruit. J. Exp. Bot. 58:4131-4146.   DOI
19 Ostensvik, O., Skulberg, O. M., Underdal, B. and Hormazabal, V. 1998. Antibacterial properties of extracts from selected planktonic freshwater cyanobacteria - a comparative study of bacterial bioassays. J. Appl. Microbiol. 84:1117-1124.   DOI
20 Osorio, E., Flores, M., Hernandez, D., Ventura, J., Rodriguez, R. and Aguilar, C. N. 2010. Biological efficiency of polyphenolic extracts from pecan nuts shell (Carya illinoensis), pomegranate husk (Punica granatum), and creosote bush leaves (Larrea tridentata Cov.) against plant pathogenic fungi. Ind. Crops Prod. 31:153-157.   DOI
21 San Francisco, M. and Cooper-Driver, G. 1984. Anti-microbial activity of phenolic acids in Pteridium aquilinum. Amer. Fern J. 74:87-96.   DOI
22 Rouser, G., Kritchevsky, G., Simon, G. and Nelson, G. J. 1967. Quantitative analysis of brain and spinach leaf lipids employing silicic acid column chromatography and acetone for elution of glycolipids. Lipids 2:37-40.   DOI
23 Salisbury, F. B., Gitelson, J. I. and Lisovsky, G. M. 1997. Bios- 3: Siberian experiments in bioregenerative life support. BioScience 47:575-585.   DOI
24 Salunkhe, D. K., Jadhav, S. J. and Yu, M. H. 1974. Quality and nutritional composition of tomato fruit as influenced by certain biochemical and physiological changes. Qual. Plant. 24:85-113.   DOI
25 Walters, D., Raynor, L., Mitchell, A., Walker, R. and Walker, K. 2004. Antifungal activities of four fatty acids against plant pathogenic fungi. Mycopathologia 157:87-90.   DOI
26 Smith, D. A. 1976. Some effects of the phytoalexin, kievitone, on the vegetative growth of Aphanomyces euteiches, Rhizoctonia solani and Fusarium solani f. sp. phaseoli. Physiol. Plant Pathol. 9:45-48.   DOI
27 Tapwal, A., Garg, S., Gautam, N. and Kumar, R. 2011. In vitro antifungal potency of plant extracts against five phytopathogens. Braz. Arch. Biol. Technol. 54:1093-1098.   DOI