Browse > Article
http://dx.doi.org/10.5423/PPJ.RW.04.2017.0084

Computer-Aided Drug Discovery in Plant Pathology  

Shanmugam, Gnanendra (Department of Biotechnology, College of Life and Applied Sciences, Yeungnam University)
Jeon, Junhyun (Department of Biotechnology, College of Life and Applied Sciences, Yeungnam University)
Publication Information
The Plant Pathology Journal / v.33, no.6, 2017 , pp. 529-542 More about this Journal
Abstract
Control of plant diseases is largely dependent on use of agrochemicals. However, there are widening gaps between our knowledge on plant diseases gained from genetic/mechanistic studies and rapid translation of the knowledge into target-oriented development of effective agrochemicals. Here we propose that the time is ripe for computer-aided drug discovery/design (CADD) in molecular plant pathology. CADD has played a pivotal role in development of medically important molecules over the last three decades. Now, explosive increase in information on genome sequences and three dimensional structures of biological molecules, in combination with advances in computational and informational technologies, opens up exciting possibilities for application of CADD in discovery and development of agrochemicals. In this review, we outline two categories of the drug discovery strategies: structure- and ligand-based CADD, and relevant computational approaches that are being employed in modern drug discovery. In order to help readers to dive into CADD, we explain concepts of homology modelling, molecular docking, virtual screening, and de novo ligand design in structure-based CADD, and pharmacophore modelling, ligand-based virtual screening, quantitative structure activity relationship modelling and de novo ligand design for ligand-based CADD. We also provide the important resources available to carry out CADD. Finally, we present a case study showing how CADD approach can be implemented in reality for identification of potent chemical compounds against the important plant pathogens, Pseudomonas syringae and Colletotrichum gloeosporioides.
Keywords
computer-aided drug discovery; agrochemicals; structure-based CADD; ligand-based CADD; control of plant disease;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Cos, P., Vlietinck, A. J., Berghe, D. V. and Maes, L. 2006. Antiinfective potential of natural products: how to develop a stronger in vitro 'proof-of-concept'. J. Ethnopharmacol. 106:290-302.   DOI
2 Dean, R., Van Kan, J. A., Pretorius, Z. A., Hammond-Kosack, K. E., Di Pietro, A., Spanu, P. D., Rudd, J. J., Dickman, M., Kahmann, R., Ellis, J. and Foster, G. D. 2012. The Top 10 fungal pathogens in molecular plant pathology. Mol. Plant Pathol. 13:414-430.   DOI
3 Dehury, B., Sahu, M., Sarma, K., Sahu, J., Sen, P., Modi, M. K., Sharma, G. D., Choudhury, M. D. and Barooah, M. 2013. Molecular phylogeny, homology modeling, and molecular dynamics simulation of race-specific bacterial blight disease resistance protein (xa5) of rice: a comparative agriproteomics approach. OMICS 17:423-438.   DOI
4 Deslandes, L. and Rivas, S. 2012. Catch me if you can: bacterial effectors and plant targets. Trends Plant Sci. 17:644-655.   DOI
5 Dey, F. and Caflisch, A. 2008. Fragment-based de novo ligand design by multiobjective evolutionary optimization. J. Chem. Inf. Model 48:679-690.   DOI
6 Doucet-Personeni, C., Bentley, P. D., Fletcher, R. J., Kinkaid, A., Kryger, G., Pirard, B., Taylor, A., Taylor, R., Taylor, J., Viner, R., Silman, I., Sussman, J. L., Greenblatt, H. M. and Lewis, T. 2001. A structure-based design approach to the development of novel, reversible AChE inhibitors. J. Med. Chem. 44:3203-3215.   DOI
7 Duffy, B. C., Zhu, L., Decornez, H. and Kitchen, D. B. 2012. Early phase drug discovery: cheminformatics and computational techniques in identifying lead series. Bioorg. Med. Chem. 20:5324-5342.   DOI
8 Dunn, M. F., Ramirez-Trujillo, J. A. and Hernandez-Lucas, I. 2009. Major roles of isocitrate lyase and malate synthase in bacterial and fungal pathogenesis. Microbiology 155:3166-3175.   DOI
9 Durrant, D. J. and McCammon, J. A. 2010. Computer-aided drugdiscovery techniques that account for receptor flexibility. Curr. Opin. Pharmacol. 10:770-774.   DOI
10 Eisenberg, D., Luthy, R. and Bowie, J. U. 1997. VERIFY3D: assessment of protein models with three-dimensional profiles. Methods Enzymol. 277:396-406.
11 El Zoeiby, A., Sanschagrin, F. and Levesque, R. C. 2003. Structure and function of the Mur enzymes: development of novel inhibitors. Mol. Microbiol. 47:1-12.
12 Eswar, N., Webb, B., Marti-Renom, M. A., Madhusudhan, M. S., Eramian, D., Shen, M., Pieper, U. and Sali, A. 2006. Comparative protein structure modeling using modeller. Curr. Protoc. Bioinformatics Chapter 5:Unit-5.6.
13 Feil, H., Feil, W. S., Chain, P., Larimer, F., DiBartolo, G., Copeland, A., Lykidis, A., Trong, S., Nolan, M., Goltsman, E., Thiel, J., Malfatti, S., Loper, J. E., Lapidus, A., Detter, J. C., Land, M., Richardson, P. M., Kyrpides, N. C., Ivanova, N. and Lindow, S. E. 2005. Comparison of the complete genome sequences of Pseudomonas syringae pv. syringae B728a and pv. tomato DC3000. Proc. Natl. Acad. Sci. U.S.A. 102:11064-11069.   DOI
14 Han, R., Zhang, J., Li, S., Cao, S., Geng, H., Yuan, Y., Xiao, W., Liu, S. and Liu, D. 2010. Homology modeling and screening of new $14{\alpha}$-demethylase inhibitor (DMI) fungicides based on optimized expression of CYP51 from Ustilago maydis in Escherichia coli. J. Agric. Food Chem. 58:12810-12816.   DOI
15 Ferreira, L. G., Dos Santos, R. N., Oliva, G. and Andricopulo, A. D. 2015. Molecular docking and structure-based drug design strategies. Molecules 20:13384-13421.   DOI
16 Franceschetti, M., Maqbool, A., Jimenez-Dalmaroni, M. J., Pennington, H. G., Kamoun, S. and Banfield, M. J. 2017. Effectors of filamentous plant pathogens: commonalities amid diversity. Microbiol. Mol. Biol. Rev. 81:e00066-16.
17 Gao, Y. M., Wang, X. J., Zhang, J., Li, M., Liu, C. X., An, J., Jiang, L. and Xiang, W. S. 2012. Borrelidin, a potent antifungal agent: insight into the antifungal mechanism against Phytophthora sojae. J. Agric. Food Chem. 60:9874-9881.   DOI
18 Geppert, H., Vogt, M. and Bajorath, J. 2010. Current trends in ligand-based virtual screening: molecular representations, data mining methods, new application areas, and performance evaluation. J. Chem. Inf. Model 50:205-216.   DOI
19 Goodford, P. J. 1985. A computational procedure for determining energetically favorable binding sites on biologically important macromolecules. J. Med. Chem. 28:849-857.   DOI
20 Hanessian, S., Lu, P. P., Sanceau, J. Y., Chemla, P., Gohda, K., Fonne-Pfister, R., Prade, L. and Cowan-Jacob, S. W. 1999. An enzyme-bound bisubstrate hybrid inhibitor of adenylosuccinate synthetase. Angew. Chem. Int. Ed. 38:3159-3162.   DOI
21 Hughes, J. P., Rees, S. S., Kalindjian, S. B. and Philpott, K. L. 2011. Principles of early drug discovery. Br. J. Pharmacol. 162:1239-1249.   DOI
22 Hansch, C. 1969. A quantitative approach to biochemical structure-activity relationships. Acc. Chem. Res. 2:232-239.   DOI
23 Hansch, C. and Fujita, T. 1964. p-${\sigma}$-${\pi}$ Analysis. A method for the correlation of biological activity and chemical structure. J. Am. Chem. Soc. 86:1616-1626.   DOI
24 Hentschel, U., Steinert, M. and Hacker, J. 2000. Common molecular mechanisms of symbiosis and pathogenesis. Trends Microbiol. 8:226-231.   DOI
25 Herron, S. R., Benen, J. A., Scavetta, R. D., Visser, J. and Jurnak, F. 2000. Structure and function of pectic enzymes: virulence factors of plant pathogens. Proc. Natl. Acad. Sci. U.S.A. 97:8762-8769.   DOI
26 Huang, S. Y. and Zou, X. 2010. Advances and challenges in protein-ligand docking. Int. J. Mol. Sci. 11:3016-3034.   DOI
27 Imam, J., Singh, P. K. and Shukla, P. 2016. Plant microbe interactions in post genomic era: perspectives and applications. Front. Microbiol. 7:1488.
28 Jain, V., Sharma, A., Singh, G., Yogavel, M. and Sharma, A. 2017. Structure-based targeting of orthologous pathogen proteins accelerates antiparasitic drug discovery. ACS Infect. Dis. 3:281-292.   DOI
29 Jovanovic, M., James, E. H., Burrows, P. C., Rego, F. G., Buck, M. and Schumacher, J. 2011. Regulation of the co-evolved HrpR and HrpS AAA+ proteins required for Pseudomonas syringae pathogenicity. Nat. Commun. 2:177.   DOI
30 Kalyaanamoorthy, S. and Chen, Y. P. P. 2011. Structure-based drug design to augment hit discovery. Drug Discov. Today 16:831-839.   DOI
31 Kandakatla, N. and Ramakrishnan, G. 2014. Ligand based pharmacophore modeling and virtual screening studies to design novel HDAC2 inhibitors. Adv. Bioinformatics 2014:812148.
32 Kapetanovic, I. M. 2008. Computer-aided drug discovery and development (CADDD): in silico-chemico-biological approach. Chem. Biol. Interact. 171:165-176.   DOI
33 Katiyar, C., Gupta, A., Kanjilal, S. and Katiya, S. 2012. Drug discovery from plant sources: an integrated approach. Ayu 33:10-19.   DOI
34 Mole, B. M., Baltrus, D. A., Dangl, J. L. and Grant, S. R. 2007. Global virulence regulation networks in phytopathogenic bacteria. Trends Microbiol. 15:363-371.   DOI
35 Laskowski, R. A., MacArthur, M. W., Moss, D. S. and Thornton, J. M. 1993. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Cryst. 26:283-291.   DOI
36 Lipinski, C. A., Lombardo, F., Dominy, B. W. and Feeney, P. J. 1997. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 23:3-25.   DOI
37 Liu, L., Qu, J., Li, D., Long, G. and Deng, Z. 2012. In silico characterization and molecular modeling of GntR family regulators in Xanthomonas axonopodis pv. citri: Implications for primary metabolism or virulence. Plant Omics 5:494-502.
38 Mansfield, J., Genin, S., Magori, S., Citovsky, V., Sriariyanum, M., Ronald, P., Dow, M. A. X., Verdier, V., Beer, S. V., Machado, M. A., Toth, I. A. N., Salmond, G. and Foster, G. D. 2012. Top 10 plant pathogenic bacteria in molecular plant pathology. Mol. Plant. Pathol. 13:614-629.   DOI
39 McInnes, C. 2007. Virtual screening strategies in drug discovery. Curr. Opin. Chem. Biol. 11:494-502.   DOI
40 Oprea, T. I. and Matter, H. 2004. Integrating virtual screening in lead discovery. Curr. Opin. Chem. Biol. 8:349-358.   DOI
41 Pathak, R. K., Taj, G., Pandey, D., Kasana, V. K., Baunthiyal, M. and Kumar, A. 2016. Molecular modeling and docking studies of phytoalexin(s) with pathogenic protein(s) as molecular targets for designing the derivatives with anti-fungal action on 'Alternaria' spp. of 'Brassica'. Plant Omics 9:172-182.   DOI
42 Pitzschke, A. and Hirt, H. 2010. New insights into an old story: Agrobacterium-induced tumour formation in plants by plant transformation. EMBO J. 29:1021-1032.   DOI
43 Schwede, T. 2013. Protein modeling: What happened to the "protein structure gap"? Structure 21:1531-1540.   DOI
44 Ramakrishnan, J., Rathore, S. S. and Raman, T. 2016. Review on fungal enzyme inhibitors-potential drug targets to manage human fungal infections. RSC Adv. 6:42387-42401.   DOI
45 Rarey, M., Kramer, B., Lengauer, T. and Klebe, G. 1996. A fast flexible docking method using an incremental construction algorithm. J. Mol. Biol. 261:470-489.   DOI
46 Rost, B. 1999. Twilight zone of protein sequence alignments. Protein Eng. 12:85-94.   DOI
47 Rost, B. and Sander, C. 1996. Bridging the protein sequencestructure gap by structure predictions. Annu. Rev. Biophys. Biomol. Struct. 25:113-136.   DOI
48 Sagatova, A. A., Keniya, M. V., Wilson, R. K., Monk, B. C. and Tyndall, J. D. 2015. Structural insights into binding of the antifungal drug fluconazole to Saccharomyces cerevisiae lanosterol $14{\alpha}$-demethylase. Antimicrob. Agents Chemother. 59:4982-4989.   DOI
49 Siegel, M. R. 1981. Sterol-inhibiting fungicides: effects on sterol biosynthesis and sites of action. Plant Dis. 65:986-989.   DOI
50 Singh, D. B. 2014. Success, limitation and future of computer aided drug designing. Transl. Med. (Sunnyvale) 4:e127.
51 Sliwoski, G., Kothiwale, S., Meiler, J. and Lowe, E. W. 2013. Computational methods in drug discovery. Pharmacol. Rev. 66:334-395.   DOI
52 Soundararajan, P., Sakkiah, S., Sivanesan, I., Lee, K. W. and Jeong, B. R. 2011. Macromolecular docking simulation to identify binding site of FGB1 for antifungal compounds. Bull. Korean Chem. Soc. 32:3675-3681.   DOI
53 Strange, R. N. and Scott, P. R. 2005. Plant disease: a threat to global food security. Annu. Rev. Phytopathol. 43:83-116.   DOI
54 Tomasic, T., Sink, R., Zidar, N., Fic, A., Contreras-Martel, C., Dessen, A., Patin, D., Blanot, D., Muller-Premru, M., Gobec, S., Zega, A., Kikelj, D. and Masic, L. P. 2012. Dual inhibitor of MurD and MurE ligases from Escherichia coli and Staphylococcus aureus. ACS Med. Chem. Lett. 3:626-630.   DOI
55 Takano, Y., Kikuchi, T., Kubo, Y., Hamer, J. E., Mise, K. and Furusawa, I. 2000. The Colletotrichum lagenarium MAP kinase gene CMK1 regulates diverse aspects of fungal pathogenesis. Mol. Plant-Microbe Interact. 13:374-383.   DOI
56 Talele, T. T., Khedkar, S. A. and Rigby, A. C. 2010. Successful applications of computer aided drug discovery: moving drugs from concept to the clinic. Curr. Top. Med. Chem. 10:127-141.   DOI
57 Taylor, D. 2015. the pharmaceutical industry and the future of drug development. In: Pharmaceuticals in the environment, eds. by R. E. Hester and R. M. Harrison, pp. 1-33. The Royal Society of Chemistry, London.
58 Vanommeslaeghe, K., Hatcher, E., Acharya, C., Kundu, S., Zhong, S., Shim, J., Darian, E., Guvench, O., Lopes, P., Vorobyov, I. and Mackerell, A. D. 2010. CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J. Comput. Chem. 31:671-690.
59 Walter, M. W. 2002. Structure-based design of agrochemicals. Nat. Prod. Rep. 19:278-291.   DOI
60 Weigelt, J. 2010. Structural genomics-impact on biomedicine and drug discovery. Exp. Cell Res. 316:1332-1338.   DOI
61 Wride, D. A., Pourmand, N., Bray, W. M., Kosarchuk, J. J., Nisam, S. C., Quan, T. K., Berkeley, R. F., Katzman, S., Hartzog, G. A., Dobkin, C. E. and Lokey, R. S. 2014. Confirmation of the cellular targets of benomyl and rapamycin using next-generation sequencing of resistant mutants in S. cerevisiae. Mol. Biosyst. 10:3179-3187.   DOI
62 Yang, S. Y. 2010. Pharmacophore modeling and applications in drug discovery: challenges and recent advances. Drug Discov. Today 15:444-450.   DOI
63 Xue, Y., Shui, G. and Wenk, M. R. 2014. TPS1 drug design for rice blast disease in Magnaporthe oryzae. Springerplus 3:18.   DOI
64 Yakoby, N., Kobiler, I., Dinoor, A. and Prusky, D. 2000. pH regulation of pectate lyase secretion modulates the attack of Colletotrichum gloeosporioides on avocado fruits. Appl. Environ. Microbiol. 66:1026-1030.   DOI
65 Yang, G. F., Jiang, X. H., Ding, Y. and Yang, H. Z. 2002. Three dimentional quantitative structure-activity relationships of novel 2-heteroaryl-4-chromanone derivatives. Acta Chim. Sin. 60:134-138.
66 Zhou, Y., Chen, L., Hu, J., Duan, H., Lin, D., Liu, P., Meng, Q., Li, B., Si, N., Liu, C. and Liu, X. 2015. Resistance mechanisms and molecular docking studies of four novel QoI fungicides in Peronophythora litchii. Sci. Rep. 5:17466.   DOI
67 Baig, M. H., Ahmad, K., Roy, S., Ashraf, J. M., Adil, M., Siddiqui, M. H., Khan, S., Kamal, M. A., Provaznik, I. and Choi, I. 2016. Computer aided drug design: success and limitations. Curr. Pharm. Des. 22:572-81.   DOI
68 Colovos, C. and Yeates, T. O. 1993. Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci. 2:1511-1519.   DOI
69 Adam, M. 2005. Integrating research and development: the emergence of rational drug design in the pharmaceutical industry. Stud. Hist. Philos. Biol. Biomed. Sci. 36:513-537.   DOI
70 Al-Hussaini, R. and Mahasneh, A. M. 2009. Microbial growth and quorum sensing antagonist activities of herbal plants extracts. Molecules 14:3425-3435.   DOI
71 Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N. and Bourne, P. E. 2000. The protein data bank. Nucleic Acids Res. 28:235-242.   DOI
72 Boch, J. and Bonas, U. 2010. Xanthomonas AvrBs3 family-type III effectors: discovery and function. Annu. Rev. Phytopathol. 48:419-436.   DOI
73 Bocsanczy, A. M., Nissinen, R. M., Oh, C.-S. and Beer, S. V. 2008. HrpN of Erwinia amylovora functions in the translocation of DspA/E into plant cells. Mol. Plant Pathol. 9:425-434.   DOI
74 Bohm, H. J. 1996. Current computational tools for de novo ligand design. Curr. Opin. Biotechnol. 7:433-436.   DOI
75 Cavasotto, C. N. and Phatak, S. S. 2009. Homology modeling in drug discovery: current trends and applications. Drug Discov. Today 14:676-683.   DOI
76 Bordas, B., Komives, T. and Lopata, A. 2003. Ligand-based computer-aided pesticide design. A review of applications of the CoMFA and CoMSIA methodologies. Pest Manag. Sci. 59:393-400.   DOI
77 Boucher, C. A., Barberis, P. A. and Demery, D. A. 1985. Transposon mutagenesis of Pseudomonas solanacearum: isolation of Tn5-induced avirulent mutants. Microbiology 131:2449-2457.   DOI
78 Boyd, L. A., Ridout, C., O'Sullivan, D. M., Leach, J. E. and Leung, H. 2013. Plant-pathogen interactions: disease resistance in modern agriculture. Trends Genet. 29:233-240.   DOI
79 Bratkovic, T., Lunder, M., Urleb, U. and Strukelj, B. 2008. Peptide inhibitors of MurD and MurE, essential enzymes of bacterial cell wall biosynthesis. J. Basic Microbiol. 48:202-206.   DOI
80 Cairns, T. C., Studholme, D. J., Talbot, N. J. and Haynes, K. 2016. New and improved techniques for the study of pathogenic fungi. Trends Microbiol. 24:35-50.   DOI
81 Chandler, D., Bailey, A. S., Tatchell, G. M., Davidson, G., Greaves, J. and Grant, W. P. 2011. The development, regulation and use of biopesticides for integrated pest management. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 366:1987-1998.   DOI
82 Chandra, N. 2011. Computational approaches for drug target identification in pathogenic diseases. Expert. Opin. Drug Disc. 6:975-979.   DOI
83 Chen, C. and Dickman, M. B. 2004. Dominant active Rac and dominant negative Rac revert the dominant active Ras phenotype in Colletotrichum trifolii by distinct signalling pathways. Mol. Microbiol. 51:1493-1507.   DOI
84 Cho, J. Y., Choi, G. J., Lee, S. W., Jang, K. S., Lim, H. K., Lim, C. H., Lee, S. O., Cho, K. Y. and Kim, J. C. 2006. Antifungal activity against Colletotrichum spp. of curcuminoids isolated from Curcuma longa L. rhizomes. J. Microbiol. Biotechnol. 16:280-285.